Real-Time Diagnosis and Forecasting Algorithms of the Tool Wear in the CNC Systems

  • Georgi M. Martinov
  • Anton S. Grigoryev
  • Petr A. Nikishechkin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9142)


The article proposes concept of solution development for diagnosis and control of real-time cutting tool in for edge cutting machining. The functional model of a diagnosis subsystem based on data reading from sensors of various types established in a cutting zone is developed. Algorithms of subsystem accepted signals processing and averaging, allowing define condition of cutting tool with defined preciseness and it’s condition forecast in future are offered. Architectural features of subsystem program realization are exposed and solutions for integration into CNC system are described. Testing results of the diagnosis subsystem and its main algorithms during manufacturing processes control on turning machine tools are presented.


Diagnosis Forecasting Cutting tool Sensor Signal processing Algorithm CNC system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grigoriev, S.N., Martinov, G.M.: Scalable open cross-platform kernel of PCNC system for multi-axis machine tool. Procedia CIRP 1, 238–243 (2012)CrossRefGoogle Scholar
  2. 2.
    Martinov, G.M., Ljubimov, A.B., Grigoriev, A.S., Martinova, L.I.: Multifunction numerical control solution for hybrid mechanic and laser machine tool. Procedia CIRP 1, 277–281 (2012)CrossRefGoogle Scholar
  3. 3.
    Kozochkin, M.P., Sabirov, F.S.: Realtime diagnostics in metalworking, Vestn. MGTU Stankin 3, 14–18 (2008)Google Scholar
  4. 4.
    Grigoriev, S.N., Martinov, G.M.: Decentralized CNC automation system for large machine tools. In: Proc. of COMA 13, International Conference on Competitive Manufacturing, Stellenbosch (South Africa), pp. 295–300 (2013). ISBN: 978-0-7972-1405-7Google Scholar
  5. 5.
    Nikishechkin, P.A., Grigoriev, A.S.: Practical aspects of the development of the module diagnosis and monitoring of cutting tools in the CNC. Vest. MGTU Stankin 4, 65–70 (2013)Google Scholar
  6. 6.
    Martinov, G.M., Ljubimov, A.B., Martinova, L.I., Grigoriev, A.S.: Remote machine tool control and diagnostic based on web technologies. In: Proc. of COMA 13, International Conference on Competitive Manufacturing, Stellenbosch (South Africa), pp. 351–356 (2013). ISBN: 978-0-7972-1405-7Google Scholar
  7. 7.
    Grigoriev, S.N., Martinov, G.M.: Research and Development of a Cross-platform CNC Kernel for Multi-axis Machine Tool. Procedia CIRP 14, 517–522 (2014)CrossRefGoogle Scholar
  8. 8.
    Zoriktuev, V.T.S., Nikitin, Y.A., Sidorov, A.S.: Mechatronic machine tool systems. Russ Eng. Res. 1, 69–73 (2008)Google Scholar
  9. 9.
    Martinov, G.M., Obuhov, A.I., Martinova, L.I., Grigoriev, A.S.: An Approach to Building Specialized CNC Systems for Non-traditional Processes. Procedia CIRP 14, 511–516 (2014)CrossRefGoogle Scholar
  10. 10.
    Timofeev, VYu., Zaitsev, A.A., Krutov, A.V.: Model of a diagnostic unit for a metalcutting tool based on thermosemf signals. Vestn. Voronezhsk. Gos. Tekhn. Univ. 5(5), 42–45 (2009)Google Scholar
  11. 11.
    Martinova, L.I., Grigoryev, A.S., Sokolov, S.V.: Diagnostics and forecasting of cutting tool wear at CNC machines. Automation and Remote Control 73(4), 742–749 (2012)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kozochkin, M.P., Kochinev, N.A., Sabirov, F.S.: Diagnostics and monitoring of complex technological processes by means of vibroacoustic signals. Izmerit. Tekhn. 7, 30–34 (2006)Google Scholar
  13. 13.
    Vereshchaka, A.S., Vereshchaka, A.A.: Functional coatings for cutting tools. Uprochn. Tekhnol. Pokryt. 6, 28–37 (2010)Google Scholar
  14. 14.
    Martinov, G.M., Trofimov, E.S.: Modular configuration and structure of applied diagnostic applications in control systems. Prib. Sist., Upravl., Kontrol’, Diagn. 7, 44–50 (2008)Google Scholar
  15. 15.
    Martinov, G.M., Kozak, N.V., Nezhmetdinov, R.A., Pushkov, R.L.: Design principle for a distributed numerical control system with open modular architecture. Vestn. MGTU Stankin 4(12), 116–122 (2010)Google Scholar
  16. 16.
    Nezhmetdinov, R.A., Sokolov, S.V., Obukhov, A.I., Grigor’ev, A.S.: Extending the functional capabilities of NC systems for control over mechano-laser processing. Automation and Remote Control 75(5), 945–952 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Georgi M. Martinov
    • 1
  • Anton S. Grigoryev
    • 1
  • Petr A. Nikishechkin
    • 1
  1. 1.FSBEI HPEMSTU “STANKIN”MoscowRussia

Personalised recommendations