Skip to main content

Obtaining Classification Rules Using lvqPSO

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9140)

Abstract

Technological advances nowadays have made it possible for processes to handle large volumes of historic information whose manual processing would be a complex task. Data mining, one of the most significant stages in the knowledge discovery and data mining (KDD) process, has a set of techniques capable of modeling and summarizing these historical data, making it easier to understand them and helping the decision making process in future situations. This article presents a new data mining adaptive technique called lvqPSO that can build, from the available information, a reduced set of simple classification rules from which the most significant relations between the features recorded can be derived. These rules operate both on numeric and nominal attributes, and they are built by combining a variation of a population metaheuristic and a competitive neural network. The method proposed was compared with several methods proposed by other authors and measured over 15 databases, and satisfactory results were obtained.

Keywords

  • Classification rules
  • Data mining
  • Adaptive strategies
  • Particle swarm optimization
  • Learning vector quantization

A. Villa Monte—Post-Graduate Fellow, UNLP  G. Aquino—Post-Graduate Fellow, CONICET

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-20466-6_20
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-20466-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, M., Ludwig, S.: Discrete particle swarm optimization with local search strategy for rule classification. In: 2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 162–167 (2012)

    Google Scholar 

  2. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization. In: Proceedings of the Fifteenth International Conference on Machine Learning, ICML 1998, pp. 144–151. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1998)

    Google Scholar 

  3. Holden, N., Freitas, A.A.: A hybrid pso/aco algorithm for discovering classification rules in data mining. Journal of Artificial Evolution and Applications 2008, 2:1–2:11 (2008)

    CrossRef  Google Scholar 

  4. Hung, C., Huang, L.: Extracting rules from optimal clusters of self-organizing maps. In: Second International Conference on Computer Modeling and Simulation, ICCMS 2010, vol. 1, pp. 382–386 (2010)

    Google Scholar 

  5. Jiang, Y., Wang, L., Chen, L.: A hybrid dynamical evolutionary algorithm for classification rule discovery. In: Second International Symposium on Intelligent Information Technology Application, vol. 3, pp. 76–79 (2008)

    Google Scholar 

  6. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  7. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 4104–4108. IEEE Computer Society, Washington, DC, USA (1997)

    Google Scholar 

  8. Khan, N., Iqbal, M., Baig, A.: Data mining by discrete pso using natural encoding. In: 2010 5th International Conference on Future Information Technology (FutureTech), pp. 1–6 (2010)

    Google Scholar 

  9. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990)

    CrossRef  Google Scholar 

  10. Kohonen, T., Schroeder, M.R., Huang, T.S. (eds.): Self-Organizing Maps, 3rd edn. Springer, New York (2001)

    MATH  Google Scholar 

  11. Lanzarini, L., Monte, A.V., Ronchetti, F.: Som+pso. a novel method to obtain classification rules. Journal of Computer Science & Technology 15(1), 15–22 (2015)

    Google Scholar 

  12. Lanzarini, L., Leza, V., De Giusti, A.: Particle swarm optimization with variable population size. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 438–449. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  13. Lanzarini, L., López, J., Maulini, J.A., De Giusti, A.: A new binary PSO with velocity control. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011, Part I. LNCS, vol. 6728, pp. 111–119. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  14. Medland, M., Otero, F.E.B., Freitas, A.A.: Improving the cAnt-Miner\(_\text{ PB }\) classification algorithm. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 73–84. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  15. Özçift, A., Kaya, M., Gülten, A., Karabulut, M.: Swarm optimized organizing map (swom): A swarm intelligence based optimization of self-organizing map. Expert Systems with Applications 36(7), 10640–10648 (2009)

    CrossRef  Google Scholar 

  16. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  17. UCI: Machine learning repository. http://archive.ics.uci.edu/ml

  18. Venturini, G.: Sia: a supervised inductive algorithm with genetic search for learning attributes based concepts. In: Brazdil, P.B. (ed.) ECML-93. LNCS, vol. 667, pp. 280–296. Springer, Berlin Heidelberg (1993)

    CrossRef  Google Scholar 

  19. Wang, H., Zhang, Y.: Improvement of discrete particle swarm classification system. In: 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 2, pp. 1027–1031 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Villa Monte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lanzarini, L., Villa Monte, A., Aquino, G., De Giusti, A. (2015). Obtaining Classification Rules Using lvqPSO. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds) Advances in Swarm and Computational Intelligence. ICSI 2015. Lecture Notes in Computer Science(), vol 9140. Springer, Cham. https://doi.org/10.1007/978-3-319-20466-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20466-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20465-9

  • Online ISBN: 978-3-319-20466-6

  • eBook Packages: Computer ScienceComputer Science (R0)