A Survey of Ranking Theory

  • Wolfgang SpohnEmail author
Part of the Springer Graduate Texts in Philosophy book series (SGTP, volume 1)


Epistemology is concerned with the fundamental laws of thought, belief, or judgment. It may inquire the fundamental relations among the objects or contents of thought and belief, i.e., among propositions or sentences. Then we enter the vast realm of formal logic. Or it may inquire the activity of judging or the attitude of believing itself. Often, we talk as if this would be a yes or no affair. From time immemorial, though, we know that judgment is firm or less than firm, that belief is a matter of degree. This insight opens another vast realm of formal epistemology.


Subjective Probability Ranking Function Belief Revision Belief Function Doxastic Attitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bacon, F. (1620), Novum Organum.Google Scholar
  2. Brafman, R. I., & Tennenholtz, M. (2000). An axiomatic treatment of three qualitative decision criteria. Journal of the Association of Computing Machinery, 47, 452–482.CrossRefGoogle Scholar
  3. Carnap, R. (1950). Logical foundations of probability. Chicago: Chicago University Press.Google Scholar
  4. Cohen, L. J. (1970). The implications of induction. London: Methuen.Google Scholar
  5. Cohen, L. J. (1977). The probable and the provable. Oxford: Oxford University Press.CrossRefGoogle Scholar
  6. Cohen, L. J. (1980). Some historical remarks on the Baconian conception of probability. Journal of the History of Ideas, 41, 219–231.CrossRefGoogle Scholar
  7. Darwiche, A., & Pearl, J. (1997). On the logic of iterated belief revision. Artificial Intelligence, 89, 1–29.CrossRefGoogle Scholar
  8. Dawid, A. P. (1979). Conditional independence in statistical theory. Journal of the Royal Statistical Society B, 41, 1–31.Google Scholar
  9. de Finetti, B. (1937). La Prévision: Ses Lois Logiques, Ses Sources Subjectives. Annales de l’Institut Henri Poincaré, 7; engl. translation: (1964) Foresight: Its logical laws, its subjective sources. In: H. E. Kyburg, Jr., H. E., & Smokler (Eds.), Studies in subjective probability (pp. 93–158). New York: Wiley.Google Scholar
  10. Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38, 325–339.CrossRefGoogle Scholar
  11. Dempster, A. P. (1968). A generalization of Bayesian inference. Journal of the Royal Statistical Society, Series B, 30, 205–247.Google Scholar
  12. Dubois, D., & Prade, H. (1988). Possibility theory: An approach to computerized processing of uncertainty. New York: Plenum Press.CrossRefGoogle Scholar
  13. Dubois, D., & Prade, H. (1995). Possibility theory as basis for qualitative decision theory. In: Proceedings of the 14th International Joint Conference on Artificial Iintelligence (IJCAI’95), Montreal, pp. 1925–1930.Google Scholar
  14. Dubois, D., & Prade, H. (1998). Possibility theory: Qualitative and quantitative aspects. In D.M. Gabbay & P. Smets (Eds.), Handbook of defeasible reasoning and uncertainty management systems (Vol. 1) (pp. 169–226). Dordrecht: Kluwer.Google Scholar
  15. Gabbay, D. M., et al. (Eds.). (1994). Handbook of logic in artificial intelligence and logic programming, vol. 3, nonmonotonic reasoning and uncertainty reasoning. Oxford: Oxford University Press.Google Scholar
  16. Garber, D. (1980). Field and Jeffrey conditionalization. Philosophy of Science, 47, 142–145.CrossRefGoogle Scholar
  17. Gärdenfors, P. (1978). Conditionals and changes of belief. In I. Niiniluoto & R. Tuomela (Eds.), The logic and epistemology of scientific change (pp. 381–404). Amsterdam: North-Holland.Google Scholar
  18. Gärdenfors, P. (1988). Knowledge in flux. Cambridge: MIT Press.Google Scholar
  19. Geiger, D., & Pearl, J. (1990). On the logic of causal models. In R. D. Shachter, T. S. Levitt, J. Lemmer, & L. N. Kanal (Eds.), Uncertainty in artificial intelligence 4 (pp. 3–14). Amsterdam: Elsevier.Google Scholar
  20. Giang, P. G., & Shenoy, P. P. (1999). On transformations between probability and spohnian disbelief functions. In K. B. Laskey & H. Prade (Eds.), Uncertainty in artificial intelligence (Vol. 15, pp. 236–244). San Francisco: Morgan Kaufmann.Google Scholar
  21. Giang, P. G., & Shenoy, P. P. (2000). A qualitative linear utility theory for Spohn’s theory of epistemic beliefs. In C. Boutilier & M. Goldszmidt (Eds.), Uncertainity in artificial intelligence (Vol. 16, pp. 220–229). San Francisco: Morgan Kaufmann.Google Scholar
  22. Giang, P. G., & Shenoy, P. P. (2005). Two axiomatic approaches to decision making using possibility theory. European Journal of Operational Research, 162, 450–467.CrossRefGoogle Scholar
  23. Gilboa, I. (1987). Expected utility with purely subjective non-additive probabilities. Journal of Mathematical Economics, 16, 65–88.CrossRefGoogle Scholar
  24. Goldszmidt, M., & Pearl, J. (1996). Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artificial Intelligence, 84, 57–112.CrossRefGoogle Scholar
  25. Hacking, I. (1975). The emergence of probability. Cambridge: Cambridge University Press.Google Scholar
  26. Halpern, J. Y. (2003). Reasoning about uncertainty. Cambridge: MIT Press.Google Scholar
  27. Hansson, S.O. (ed.) (1997), Special Issue on Non-Prioritized Belief Revision. Theoria 63, 1–134.Google Scholar
  28. Hansson, S. O. (1999). A textbook of belief dynamics. Theory change and database updating. Dordrecht: Kluwer.CrossRefGoogle Scholar
  29. Harper, W. L. (1976). Rational belief change, popper functions and counterfactuals. In W. L. Harper & C. A. Hooker (Eds.), Foundations of probability theory, statistical inference, and statistical theories of science (Vol. I, pp. 73–115). Dordrecht: Reidel.CrossRefGoogle Scholar
  30. Hempel, C. G. (1945). Studies in the logic of confirmation. Mind, 54, 1–26 + 97–121.Google Scholar
  31. Hempel, C. G. (1962). Deductive-nomological vs. Statistical explanation. In H. Feigl & G. Maxwell (Eds.), Minnesota studies in the philosophy of science, vol. III, scientific explanation, space, and time (pp. 98–169). Minneapolis: University of Minnesota Press.Google Scholar
  32. Hild, M. (t.a.). Introduction to induction: On the first principles of reasoning, Manuscript.Google Scholar
  33. Hild, M., & Spohn, W. (2008). The measurement of ranks and the laws of iterated contraction. Artificial Intelligence, 172, 1195–1218.CrossRefGoogle Scholar
  34. Hintikka, J. (1962). Knowledge and belief. Ithaca: Cornell University Press.Google Scholar
  35. Hisdal, E. (1978). Conditional possibilities – independence and noninteractivity. Fuzzy Sets and Systems, 1, 283–297.CrossRefGoogle Scholar
  36. Hohenadel, S. (2013). Efficient epistemic updates in rank-based belief networks. Dissertation, University of Konstanz. See
  37. Huber, F. (2006). Ranking functions and rankings on languages. Artificial Intelligence, 170, 462–471.CrossRefGoogle Scholar
  38. Huber, F. (2007). The consistency argument for ranking functions. Studia Logica, 86, 299–329.CrossRefGoogle Scholar
  39. Hunter, D. (1991). Graphoids, semi-graphoids, and ordinal conditional functions. International Journal of Approximate Reasoning, 5, 489–504.CrossRefGoogle Scholar
  40. Jaffray, J.-Y. (1989). Linear utility theory for belief functions. Operations Research Letters, 8, 107–112.CrossRefGoogle Scholar
  41. Jeffrey, R. C. (1965). The logic of decision. Chicago: University of Chicago Press, 2nd ed. 1983.Google Scholar
  42. Jeffrey, R. C. (1991). Probability and the art of judgment. Cambridge: Cambridge University Press.Google Scholar
  43. Jensen, F. V. (2001). Bayesian networks and decision graphs. Berlin: Springer.CrossRefGoogle Scholar
  44. Joyce, J. (1998). A nonpragmatic vindication of probabilism. Philosophy of Science, 65, 575–603.CrossRefGoogle Scholar
  45. Joyce, J. (1999). The foundations of causal decision theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  46. Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of measurement (Vol. I). New York: Academic.Google Scholar
  47. Krüger, L., et al. (1987). The probabilistic revolution. Vol. 1: ideas in history, Vol. 2: ideas in the sciences. Cambridge: MIT Press.Google Scholar
  48. Kyburg, H. E., Jr. (1961). Probability and the logic of rational belief. Middletown: Wesleyan University Press.Google Scholar
  49. Lange, M. (2000). Natural laws in scientific practice. Oxford: Oxford University Press.Google Scholar
  50. Levi, I. (1967). Gambling with truth. New York: A. A. Knopf.Google Scholar
  51. Levi, I. (2004). Mild contraction: Evaluating loss of information due to loss of belief. Oxford: Oxford University Press.CrossRefGoogle Scholar
  52. Lewis, D. (1969). Convention: A philosophical study. Cambridge: Harvard University Press.Google Scholar
  53. Lewis, D. (1973). Counterfactuals. Oxford: Blackwell.Google Scholar
  54. Lewis, D. (1975). Languages and language. In K. Gunderson (Ed.), Minnesota studies in the philosophy of science (Vol. VII, pp. 3–35). Minneapolis: University of Minnesota Press.Google Scholar
  55. Lewis, D. (1980). A subjectivist’s guide to objective chance. In R. C. Jeffrey (Ed.), Studies in inductive logic and probability (Vol. II, pp. 263–293). Berkeley: University of California Press.Google Scholar
  56. Luce, R. D., & Raiffa, H. (1957). Games and decisions. New York: Wiley.Google Scholar
  57. Maher, P. (2002). Joyce’s argument for probabilism. Philosophy of Science, 69, 73–81.CrossRefGoogle Scholar
  58. McGee, V. (1994). Learning the impossible. In E. Eells & B. Skyrms (Eds.), Probability and conditionals. Belief revision and rational decision (pp. 179–199). Cambridge: Cambridge University Press.Google Scholar
  59. Merin, A. (2006). Decision theory of rhetoric, book manuscript, to appear.Google Scholar
  60. Merin, A. (2008). Relevance and reasons in probability and epistemic ranking theory. A study in cognitive economy. In: Forschungsberichte der DFG-Forschergruppe Logik in der Philosophie (Nr. 130). University of Konstanz.Google Scholar
  61. Neapolitan, R. E. (1990). Probabilistic reasoning in expert systems: Theory and algorithms. New York: Wiley.Google Scholar
  62. Oddie, G. (2001). Truthlikeness. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2001 Edition).
  63. Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo: Morgan Kaufman.Google Scholar
  64. Pearl, J. (2000). Causality. Models, reasoning, and inference. Cambridge: Cambridge University Press.Google Scholar
  65. Plantinga, A. (1993). Warrant: The current debate. Oxford: Oxford University Press.CrossRefGoogle Scholar
  66. Pollock, J. L. (1995). Cognitive carpentry. Cambridge: MIT Press.Google Scholar
  67. Rescher, N. (1964). Hypothetical reasoning. Amsterdam: North-Holland.Google Scholar
  68. Rescher, N. (1976). Plausible reasoning. Assen: Van Gorcum.Google Scholar
  69. Rott, H. (2001). Change, choice and inference: A study of belief revision and nonmonotonic reasoning. Oxford: Oxford University Press.Google Scholar
  70. Rott, H. (2008). Shifting priorities: Simple representations for twenty seven iterated theory change operators. In D. Makinson, J. Malinowski, & H. Wansing (Eds.), Towards mathematical philosophy. Dordrecht: Springer.Google Scholar
  71. Sarin, R., & Wakker, P. P. (1992). A simple axiomatization of nonadditive expected utility. Econometrica, 60, 1255–1272.CrossRefGoogle Scholar
  72. Schmeidler, D. (1989). Subjective probability and expected utility without additivity. Econometrica, 57, 571–587.CrossRefGoogle Scholar
  73. Shackle, G. L. S. (1949). Expectation in economics. Cambridge: Cambridge University Press.Google Scholar
  74. Shackle, G. L. S. (1969). Decision, order and time in human affairs (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  75. Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press.Google Scholar
  76. Shafer, G. (1978). Non-additive probabilities in the work of Bernoulli and Lambert. Archive for History of Exact Sciences, 19, 309–370.CrossRefGoogle Scholar
  77. Shenoy, P. P. (1991). On Spohn’s rule for revision of beliefs. International Journal of Approximate Reasoning, 5, 149–181.CrossRefGoogle Scholar
  78. Smets, P. (1998). The Transferable Belief Model for Quantified Belief Representation. In D.M. Gabbay & P. Smets (Eds.), Handbook of defeasible reasoning and uncertainty management systems (Vol. 1) (pp. 267–301). Dordrecht: Kluwer.Google Scholar
  79. Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction, and search. Berlin: Springer, 2nd ed. 2000.Google Scholar
  80. Spohn, W. (1976/78). Grundlagen der Entscheidungstheorie. Ph.D. thesis, University of Munich 1976, published: Kronberg/Ts.: Scriptor 1978, out of print, pdf-version at:
  81. Spohn, W. (1983). Eine Theorie der Kausalität, unpublished Habilitationsschrift, Universität München, pdf-version at:
  82. Spohn, W. (1986). The representation of Popper measures. Topoi, 5, 69–74.CrossRefGoogle Scholar
  83. Spohn, W. (1988). Ordinal conditional functions. A dynamic theory of epistemic states. In W. L. Harper & B. Skyrms (Eds.), Causation in decision, belief change, and statistics (Vol. II, pp. 105–134). Dordrecht: Kluwer.CrossRefGoogle Scholar
  84. Spohn, W. (1990). A general non-probabilistic theory of inductive reasoning. In R. D. Shachter, T. S. Levitt, J. Lemmer, & L. N. Kanal (Eds.), Uncertainty in artificial intelligence (Vol. 4, pp. 149–158). Amsterdam: Elsevier.Google Scholar
  85. Spohn, W. (1991). A reason for explanation: Explanations provide stable reasons. In W. Spohn, B. C. van Fraassen, & B. Skyrms (Eds.), Existence and explanation (pp. 165–196). Dordrecht: Kluwer.CrossRefGoogle Scholar
  86. Spohn, W. (1993). Causal laws are objectifications of inductive schemes. In J. Dubucs (Ed.), Philosophy of probability (pp. 223–252). Dordrecht: Kluwer.CrossRefGoogle Scholar
  87. Spohn, W. (1994a). On the properties of conditional independence. In P. Humphreys (Ed.), Patrick suppes: Scientific philosopher. Vol. 1: Probability and probabilistic causality (pp. 173–194). Dordrecht: Kluwer.Google Scholar
  88. Spohn, W. (1994b). On Reichenbach’s principle of the common cause. In W. C. Salmon & G. Wolters (Eds.), Logic, language, and the structure of scientific theories (pp. 215–239). Pittsburgh: Pittsburgh University Press.Google Scholar
  89. Spohn, W. (1999). Two coherence principles. Erkenntnis, 50, 155–175.CrossRefGoogle Scholar
  90. Spohn, W. (2001a). Vier Begründungsbegriffe. In T. Grundmann (Ed.), Erkenntnistheorie. Positionen zwischen Tradition und Gegenwart (pp. 33–52). Paderborn: Mentis.Google Scholar
  91. Spohn, W. (2001b). Bayesian nets are all there is to causal dependence. In M. C. Galavotti, P. Suppes, & D. Costantini (Eds.), Stochastic dependence and causality (pp. 157–172). Stanford: CSLI Publications.Google Scholar
  92. Spohn, W. (2002). Laws, ceteris paribus conditions, and the dynamics of belief. Erkenntnis, 57, 373–394; also in: Earman, J., Glymour, C., Mitchell, S. (Eds.). (2002). Ceteris paribus laws (pp. 97–118). Dordrecht: Kluwer.Google Scholar
  93. Spohn, W. (2005a). Enumerative induction and lawlikeness. Philosophy of Science, 72, 164–187.CrossRefGoogle Scholar
  94. Spohn, W. (2005b). Isaac Levi’s potentially surprising epistemological picture. In E. Olsson (Ed.), Knowledge and inquiry: Essays on the pragmatism of Isaac Levi. Cambridge: Cambridge University Press.Google Scholar
  95. Spohn, W. (2006). Causation: An alternative. British Journal for the Philosophy of Science, 57, 93–119.CrossRefGoogle Scholar
  96. Spohn, W. (2012). The laws of belief. Ranking theory and its philosophical applications. Oxford: Oxford University Press.CrossRefGoogle Scholar
  97. Spohn, W. (2014). The epistemic account of ceteris paribus conditions. European Journal for the Philosophy of Science, 4(2014), 385–408.CrossRefGoogle Scholar
  98. Spohn, W. (2015). Conditionals: A unified ranking-theoretic perspective. Philosophers’ Imprint 15(1)1–30; see:
  99. Studeny, M. (1989). Multiinformation and the problem of characterization of conditional independence relations. Problems of Control and Information Theory, 18, 3–16.Google Scholar
  100. Wakker, P. P. (2005). Decision-foundations for properties of nonadditive measures: General state spaces or general outcome spaces. Games and Economic Behavior, 50, 107–125.CrossRefGoogle Scholar
  101. Williamson, T. (1994). Vagueness. London: Routledge.Google Scholar
  102. Zadeh, L. A. (1975). Fuzzy logics and approximate reasoning. Synthese, 30, 407–428.CrossRefGoogle Scholar
  103. Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Fachbereich PhilosophieUniversität KonstanzKonstanzGermany

Personalised recommendations