Abstract
Statins are the most widely prescribed lipid-lowering medications and have been shown to lower the relative risk for cardiovascular events by 20–50 %. However, despite their lipid lowering and cardioprotective effects, substantial residual cardiovascular risk persists in some patients taking statins, particularly in some subgroups, such as those with atherogenic dyslipidemia, i.e., high TG and low HDL. There has been significant controversy regarding the role of omega-3 fatty acid (OM3 FA) in the prevention and management of cardiovascular disease (CVD). However, there is clear scientific understanding of how OM3 FAs integrate with physiology to improve lipid serologies to potentially prevent cardiovascular disease. These mechanisms can be exploited for the modification of disease. Current studies on how to best take advantage of this implicate that OM3 FAs alter the course of CVD both for prevention of adverse cardiovascular outcomes and treatment of derangements in lipid serologies. Current guidelines and recommendations support their regular integration into the diet and supplementation for those with severe hypertriglyceridemia as adjunct therapy. Emerging data suggests that OM3 FAs may have implications in specific subpopulations. In particular, patients with elevated triglycerides may benefit from supplementation as combination therapy to statins and lifestyle changes, especially those with TGs ≥500 mg/dL and perhaps, pending results of ongoing trials, those with TGs ≥200 mg/dL and <500 mg/dL. Further studies should seek to assess those with high residual risk while on statin therapy, which is best estimated by measuring the affect on triglyceride rich lipoprotein-cholesterol (TRL-C).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cholesterol Treatment Trialists Collaborators. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81. doi:10.1016/S0140-6736(10)61350-5.
Fruchart JC, Sacks F, Hermans MP, et al. The residual risk reduction initiative: a call to action to reduce residual vascular risk in patients with dyslipidemia. Am J Cardiol. 2008;102(4):319–35. doi:10.1016/j.amjcard.2008.10.002.
Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–78. doi:10.1016/S0140-6736(05)67394-1.
Mihaylova B, Emberson J, Blackwell L, et al. The effects of lowering LDL cholesterol with statin therapy in people at Low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380(9841):581–90. doi:10.1016/S0140-6736(12)60367-5.
Manninen V, Tenkanen L, Koskinen P, et al. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki heart study. Implications for treatment. Circulation. 1992;85:37–45. doi:10.1161/01.CIR.85.1.37.
Bezafibrate Infarction Prevention Study. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation. 2000;102(1):21–7. doi:10.1161/01.CIR.102.1.21.
The ACCORD Study Group. Relation of gemfibrozil treatment and high-density lipoprotein subpopulation profile with cardiovascular events in the veterans affairs high-density lipoprotein intervention trial. Metabolism. 2008;57(1):77–83. doi:10.1016/j.metabol.2007.08.009.
The ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–74.
Scott R, O’Brien R, Fulcher G, et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009;32(3):493–8. doi:10.2337/dc08-1543. Clinical.
Mora S, Wenger NK, Demicco DA, et al. Determinants of residual risk in secondary prevention ptients treated with high- versus Low-dose statin T therapy: the Treating to New Targets (TNT) study. Circulation. 2012;125:1979–87. doi:10.1161/CIRCULATIONAHA.111.088591.
Sasaki J, Yokoyama M, Matsuzaki M, et al. Relationship between coronary artery disease and non-HDL-C, and effect of highly purified EPA on the risk of coronary artery disease in hypercholesterolemic patients treated with statins: Sub-analysis of the Japan EPA Lipid Intervention Study (JELIS). J Atheroscler Thromb. 2012;19:194–204. doi:10.5551/jat.8326.
The AIM-HIGH Investigators. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67.
Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–8. doi:10.1016/S0140-6736(07)60527-3.
Mokdad A, Bowman B, Ford E, et al. The continuing epidemics of obesity and diabetes in the United States. JAMA. 2001;286(10):1195–200. doi:10.1001/jama.286.10.1195.
D’Agostino R, Hamman R, Karter A, et al. Cardiovascular disease risk factors predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes Care. 2004;27(9):2234–40. doi:10.2337/diacare.27.9.2234.
Cowie CC, Rust KF, Byrd-Hold DD, et al. Prevalence of diabetes and impaired fasting glucose in adults in the U.S. Population: national health and nutrition examination survey 1999–2002. Diabetes Care. 2006;29(6):1263–8.
Cowie CC, Rust KF, Byrd-Hold DD, et al. Prevalence of diabetes and high risk for population in 1988–2006. Diabetes Care. 2010;33(3). doi:10.2337/dc09-1524.
Ford ES, Li C, Zhao G, et al. Hypertriglyceridemia and its pharmacologic treatment among US adults. Arch Intern Med. 2009;169(6):572–8. doi:10.1001/archinternmed.2008.599.
Miller M, Stone NJ, Ballantyne C, et al. Triglycerides and cardiovascular disease: a scientific statement from the american heart association. Circulation. 2011;123:2292–333. doi:10.1161/CIR.0b013e3182160726.
Menke A, Rust KF, Fradkin J, et al. Associations between trends in race/ethnicity, aging, and body mass index with diabetes prevalence in the United States. Ann Intern Med. 2014;161(5):328. doi:10.7326/M14-0286.
Fox CS, Pencina MJ, Meigs JB, et al. Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: the Framingham heart study. Circulation. 2006;113:2914–8. doi:10.1161/CIRCULATIONAHA.106.613828.
Flegal KM. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. 2012;307(5):491. doi:10.1001/jama.2012.39.
Carroll MD. Trends in lipids and lipoproteins in US adults, 1988–2010. JAMA. 2012;308(15):1545. doi:10.1001/jama.2012.13260.
Colussi G, Catena C, Baroselli S, et al. Omega-3 fatty acids: from biochemistry to their clinical Ese in the prevention of cardiovascular disease. Recent Pat Cardiovasc Drug Discov. 2007;2:13–21. doi:10.2174/157489007779606158.
Abedi E, Sahari MA. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci Nutr. 2014;5(2):443–63. doi:10.1002/fsn3.121.
Kaur N, Chugh V, Gupta AK. Essential fatty acids as functional components of foods- a review. J Food Sci Technol. 2012;51(October):1–15. doi:10.1007/s13197-012-0677-0.
Bays HE, Tighe AP, Sadovsky R, et al. Prescription omega-3 fatty acids and their lipid effects: physiologic mechanisms of action and clinical implications. Expert Rev Cardiovasc Ther. 2008;6:391–409. doi:10.1586/14779072.6.3.391.
Harris WS, Poston WC, Haddock CK. Tissue n – 3 and n – 6 fatty acids and risk for coronary heart disease events. Atherosclerosis. 2007;193:1–10. doi:10.1016/j.atherosclerosis.2007.03.018.
Harris WS, Miller M, Tighe AP, et al. Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis. 2008;197:12–24. doi:10.1016/j.atherosclerosis.2007.11.008.
Eslick G, Peter H, Smith C, et al. Benefits of fish Oil supplementation in hyperlipidemia: a systematic review and meta-analysis. Int J Cardiol. 2009;136(1):4016.
Jacobson T, Glickstein S, Rowe J, et al. Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review. J Clin Lipidol. 2012;6:5–18. doi:10.1016/j.jacl.2011.10.018.
The TG and HDL Working Group of the Exome Sequencing Project. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31. doi:10.1056/NEJMoa1307095.
Curtiss LK. ApoE in atherosclerosis. Arterioscler Thromb Vasc Biol. 2000;20:1852–3.
Mendivil CO, Zheng C, Furtado J, et al. Metabolism of very-low-density lipoprotein and Low-density lipoprotein containing apolipoprotein C-III and not other small apolipoproteins. Arterioscler Thromb Vasc Biol. 2010;30:239–45. doi:10.1161/ATVBAHA.109.197830.
Mendivil CO, Rimm EB, Furtado J, et al. Apolipoprotein E in VLDL and LDL with apolipoprotein C-III is associated with a lower rrisk of coronary heart disease. J Am Heart Assoc. 2013;2(Ldl):e000130. doi:10.1161/JAHA.113.000130.
Zheng C, Khoo C, Furtado J, et al. Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense Low-density lipoprotein phenotype. Circulation. 2010;121:1722–34. doi:10.1161/CIRCULATIONAHA.109.875807.
Kawakami A, Yoshida M. Apolipoprotein CIII links dyslipidemia with atherosclerosis. J Atheroscler Thromb. 2009;16:6–11. doi:10.5551/jat.E607.
Zheng C. Updates on apolipoprotein CIII: fulfilling promise as a therapeutic target for hypertriglyceridemia and cardiovascular disease. Curr Opin Lipidol. 2014;25:35–9. doi:10.1097/MOL.0000000000000040.
Shachter NS. Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Curr Opin Lipidol. 2001;12:297–304. doi:10.1097/00041433-200106000-00009.
Lemieux I, Salomon H, Després J-P. Contribution of apo CIII reduction to the greater effect of 12-week micronized fenofibrate than atorvastatin therapy on triglyceride levels and LDL size in dyslipidemic patients. Ann Med. 2003;35(5):442–8. doi:10.1016/S1567-5688(02)80392-0.
Davidson MH, Maki KC, Bays H, et al. Effects of prescription omega-3-acid ethyl esters on lipoprotein particle concentrations, apolipoproteins AI and CIII, and lipoprotein-associated phospholipase A2 mass in statin-treated subjects with hypertriglyceridemia. J Clin Lipidol. 2009;3(5):332–40. doi:10.1016/j.jacl.2009.08.001.
Belfort R, Berria R, Cornell J, et al. Fenofibrate reduces systemic inflammation markers independent of its effects on lipid and glucose metabolism in patients with the metabolic syndrome. J Clin Endocrinol Metab. 2010;95(2):829–36. doi:10.1210/jc.2009-1487.
Maki KC, Bays HE, Dicklin MR, et al. Effects of prescription omega-3-acid ethyl esters, coadministered with atorvastatin, on circulating levels of lipoprotein particles, apolipoprotein CIII, and lipoprotein-associated phospholipase A2 mass in men and women with mixed dyslipidemia. J Clin Lipidol. 2011;5(6):483–92. doi:10.1016/j.jacl.2011.09.001.
Morton A, Furtado J, Amerine W, et al. The effect of omega-3 carboxylic acids on apolipoprotein CIII containing lipoproteins in moderate to severe hypertriglyceridemia. Circulation. 2014;130(Suppl 2): Abstract 16864.
Von Schacky C. Omega-3 index and cardiovascular health. Nutrients. 2014;6:799–814. doi:10.3390/nu6020799.
Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129 (25 Suppl 2):S1–45. doi:10.1161/01.cir.0000437738.63853.7a.
Grundy SM, Arai H, Barter P, et al. An international atherosclerosis society position paper: global recommendations for the management of dyslipidemia – full report. J Clin Lipidol. 2014;8:29–60. doi:10.1016/j.jacl.2013.12.005.
Reiner Ž, Catapano AL, De Backer G, et al. ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J. 2011;32(2011):1769–818. doi:10.1093/eurheartj/ehr158.
Jellinger PS, Smith DA, Mehta AE, et al. American Association of Clinical Endocrinologists’ guidelines for management of dyslipidemia and prevention of atherosclerosis. Endocr Pract. 2012;18(C):1–78. http://www.ncbi.nlm.nih.gov/pubmed/22522068.
Saito Y, Yokoyama M, Origasa H, et al. Effects of EPA on coronary artery disease in hypercholesterolemic patients with multiple risk factors: Sub-analysis of primary prevention cases from the Japan EPA Lipid Intervention Study (JELIS). Atherosclerosis. 2008;200:135–40. doi:10.1016/j.atherosclerosis.2008.06.003.
Guyton JR, Slee AE, Anderson T, et al. Relationship of lipoproteins to cardiovascular events: the AIM-HIGH Trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides and Impact on Global Health Outcomes). J Am Coll Cardiol. 2013;62(17):1580–4. doi:10.1016/j.jacc.2013.07.023.
Frick M, Elo O, Haapa K, et al. Helsinki heart study: primary-prevention trial with gemfibrozil in middle-aged Men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987;317(20):1237–45.
Tenkanen L, Manttari M, Kovanen P, et al. Gemfibrozil in the treatment of dyslipidemia: an 18-year mortality follow-up of the Helsinki Heart Study. Arch Intern Med. 2006;166(7):743–8.
Rubins H, Robins S, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med. 1999;341(6):410–8.
Keech A, Simes R, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–61. doi:10.1016/S0140-6736(05)67667-2.
Faergeman O, Holme I, Fayyad R, et al. Plasma triglycerides and cardiovascular events in the Treating to New Targets and Incremental Decrease in End-Points Through Aggressive Lipid Lowering trials of statins in patients with coronary artery disease. Am J Cardiol. 2009;104(4):459–63. doi:10.1016/j.amjcard.2009.04.008.
Cholesterol Treatment Trialists Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–78. doi:10.1016/S0140-6736(05)67394-1.
Jacobson TA, Ito MK, Maki KC, et al. National lipid association recommendations for patient-centered management of dyslipidemia: part 1 – executive summary. J Clin Lipidol. 2014;8(5):473–88. doi:10.1016/j.jacl.2014.07.007.
Davidson MH, Maki KC, Pearson TA, et al. Results of the National Cholesterol Education (NCEP) program evaluation project utilizing novel T-technology (NEPTUNE) II survey and implications for treatment under the recent NCEP writing group recommendations. Am J Cardiol. 2005;96:556–63. doi:10.1016/j.amjcard.2005.04.019.
Fedder DO, Koro CE, Italien GJL. Clinical investigation and reports New national cholesterol education program III guidelines for primary prevention lipid-lowering drug therapy. Circulation. 2002;2002:152–6.
Mazzone T, Meyer PM, Kondos GT, et al. Relationship of traditional and nontraditional cardiovascular risk factors to coronary artery calcium in type 2 diabetes. Diabetes. 2007;56(3):849–55. doi:10.2337/db06-0935.
Maki KC, Bays HE, Dicklin MR. Treatment options for the management of hypertriglyceridemia: strategies based on the best-available evidence. J Clin Lipidol. 2012;6:413–26. doi:10.1016/j.jacl.2012.04.003.
Varbo A, Benn M, Tybjærg-Hansen A, et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61(4):427–36. doi:10.1016/j.jacc.2012.08.1026.
Mahley R, Rall S. Type III hyperlipoproteinemia (dysbetalipoproteinemia): the role of apolipoprotinemia E in normal and abnormal lipoprotein metabolism. In: Scriver A, Beader W, Sly S, Valle D, editors. The metabolic and molecular basis of inherited disease. New York: McGraw Hill; 1995. p. 1953–80.
Assmann G, Schulte H, Funke H, et al. The emergence of triglycerides as a significant independent risk factor in coronary artery disease. Eur Heart J. 1998;19:M8–14.
Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease: 10 158 incident cases among 262 525 participants in 29 western prospective studies. Circulation. 2007;115:450–8. doi:10.1161/CIRCULATIONAHA.106.637793.
Hokanson J, Austin M. Triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a metaanalysis of population-based prospective. J Cardiovasc Risk. 1996;3:213–19. http://cpr.sagepub.com/content/3/2/213.short.
Moneta GL. Major lipids, apolipoproteins, and risk of vascular disease. Yearb Vasc Surg. 2010;2010(18):42–4. doi:10.1016/S0749-4041(10)79320-9.
Cui Y, Blumenthal RS, Flaws JA, et al. Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Arch Intern Med. 2001;161:1413–9.
Liu J, Sempos CT, Donahue RP, et al. Non-high-density lipoprotein and very-low-density lipoprotein cholesterol and their risk predictive values in coronary heart disease. Am J Cardiol. 2006;98:1363–8. doi:10.1016/j.amjcard.2006.06.032.
Arsenault BJ, Rana JS, Stroes ESG, et al. Beyond low-density lipoprotein cholesterol. Respective contributions of non-high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healt. J Am Coll Cardiol. 2009;55(1):35–41. doi:10.1016/j.jacc.2009.07.057.
Boekholdt SM, Arsenault BJ, Mora S, et al. Association of LDL cholesterol, non–HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins. JAMA. 2012;307(12):1302–9.
Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626–35. doi:10.1016/S0140-6736(14)61177-6.
Hennig B, Chung BH, Watkins BA, et al. Disruption of endothelial barrier function by lipolytic remnants of triglyceride-rich lipoproteins. Atherosclerosis. 1992;95:235–47. doi:10.1016/0021-9150(92)90027-E.
Botham KM, Wheeler-Jones CPD. Postprandial lipoproteins and the molecular regulation of vascular homeostasis. Prog Lipid Res. 2013;52(4):446–64. doi:10.1016/j.plipres.2013.06.001.
Bravo E, Napolitano M. Mechanisms involved in chylomicron remnant lipid uptake by macrophages. Biochem Soc Trans. 2007;35:459–63. doi:10.1042/BST0350459.
Nakajima K, Nakano T, Tokita Y, et al. Postprandial lipoprotein metabolism: VLDL vs chylomicrons. Clin Chim Acta. 2011;412(15–16):1306–18. doi:10.1016/j.cca.2011.04.018.
Tomkin GH, Owens D. Abnormalities in apo B-containing lipoproteins in diabetes and atherosclerosis. Diabetes Metab Res Rev. 2001;17(1):27–43. doi:10.1002/dmrr.179.
Vine DF, Glimm DR, Proctor SD. Intestinal lipid transport and chylomicron production: possible links to exacerbated atherogenesis in a rodent model of the metabolic syndrome. Atheroscler Suppl. 2008;9:69–76. doi:10.1016/j.atherosclerosissup.2008.05.004.
Mora S, Otvos JD, Rifai N, et al. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation. 2009;119:931–9. doi:10.1161/CIRCULATIONAHA.108.816181.
Pischon T, Girman CJ, Sacks FM, et al. Non-high-density lipoprotein cholesterol and apolipoprotein B in the prediction of coronary heart disease in men. Circulation. 2005;112:3375–83. doi:10.1161/CIRCULATIONAHA.104.532499.
Mendivil CO, Rimm EB, Furtado J, et al. Low-density lipoproteins containing apolipoprotein C-III and the risk of coronary heart disease. Circulation. 2011;124(19):2065–72. doi:10.1161/CIRCULATIONAHA.111.056986.
Burr M. Reflections on the Diet and Reinfarction Trial (DART). Eur Hear J Suppl. 2001;3:D75–8. doi:10.1016/S1520-765X(01)90124-5.
Harris W, Ginsberg H, Arunakul N, et al. Safety and efficacy of omacor in severe hypertriglyceridemia. J Cardiovasc Risk. 1997;4:385–91.
GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-prevenzione trial. Lancet. 1999;354:447–55. doi:S0140673699070725 [pii].
Kromhout D, Giltay EJ, Geleijnse JM. N-3 fatty acids and cardiovascular events after myocardial infarction. N Engl J Med. 2010;363:2015–26. doi:10.1056/NEJMoa1003603.
The ORIGIN, Investigators T. n–3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367:309–18. doi:10.1056/NEJMoa1203859.
The Risk and Prevention Study Collaborative Group. n–3 fatty acids in patients with multiple cardiovascular risk factors. N Engl J Med. 2013;368:1800–8. doi:10.1056/NEJMoa1205409.
Rizos EC, Ntzani EE, Bika E, et al. Association between omega-3 fatty acid. JAMA. 2012;308:1024–33. doi:10.1001/2012.jama.11374.
Eussen SRBM, Geleijnse JM, Giltay EJ, et al. Effects of n-3 fatty acids on major cardiovascular events in statin users and Non-users with a history of myocardial infarction. Eur Heart J. 2012;33:1582–8. doi:10.1093/eurheartj/ehr499.
Contacos C, Barter PJ, Sullivan DR. Effect of pravastatin and omega-3 fatty acids on plasma lipids and lipoproteins in patients with combined hyperlipidemia. Arterioscler Thromb. 1993;13:1755–62.
Nordøy A, Bønaa KH, Nilsen H, et al. Effects of simvastatin and omega-3 fatty acids on plasma lipoproteins and lipid peroxidation in patients with combined hyperlipidaemia. J Intern Med. 1998;243:163–70.
Davidson MH, Stein EA, Bays HE, et al. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin Ther. 2007;29(7):1354–67. doi:10.1016/j.clinthera.2007.07.018.
Ballantyne CM, Bays HE, Kastelein JJ, et al. Efficacy and safety of eicosapentaenoic acid ethyl ester (AMR101) therapy in statin-treated patients with persistent high triglycerides (from the ANCHOR study). Am J Cardiol. 2012;110:984–92. doi:10.1016/j.amjcard.2012.05.031.
Bays HE, Ballantyne CM, Kastelein JJ, et al. Eicosapentaenoic Acid Ethyl Ester (AMR101) Therapy in Patients with Very High Triglyceride Levels (from the Multi-center, placebo-controlled, randomized, double-blind, 12-week study with an open-label extension [MARINE] Trial). Am J Cardiol. 2011;108(502):682–90. doi:10.1016/j.amjcard.2011.04.015.
Kastelein JJP, Maki KC, Susekov A, et al. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia: the EpanoVa for lowering very high triglyceridEs (EVOLVE) trial. J Clin Lipidol. 2014;8:94–106. doi:10.1016/j.jacl.2013.10.003.
Maki KC, Orloff DG, Nicholls SJ, et al. A highly bioavailable omega-3 free fatty acid formulation improves the cardiovascular risk profile in high-risk, statin-treated patients with residual hypertriglyceridemia (the ESPRIT trial). Clin Ther. 2013;35(9):1400–11. doi:10.1016/j.clinthera.2013.07.420.
Offman E, Marenco T, Ferber S, et al. Steady-state bioavailability of prescription omega-3 on a low-fat diet is significantly improved with a free fatty acid formulation compared with an ethyl ester formulation: the ECLIPSE II study. Vasc Health Risk Manag. 2013;9:563–73. doi:10.2147/VHRM.S50464.
Davidson MH, Johnson J, Rooney MW, et al. A novel omega-3 free fatty acid formulation has dramatically improved bioavailability during a low-fat diet compared with omega-3-acid ethyl esters: the ECLIPSE (epanova® compared to Lovaza® in a pharmacokinetic single-dose evaluation) study. J Clin Lipidol. 2012;6(6):573–84. doi:10.1016/j.jacl.2012.01.002.
Research and Development. 2014. http://www.amarincorp.com/products.html. Accessed 20 Feb 2015.
US National Institutes of Health. A study of AMR101 to evaluate its ability to reduce cardiovascular events in high risk patients with hypertriglyceridemia and on statin. The primary objective is to evaluate the effect of 4 g/Day AMR101 for preventing the occurrence of a first Major Cardi. US Natl Institutes Heal. 2015. https://www.clinicaltrial.gov/ct2/show/NCT01492361. Accessed 20 Feb 2015.
US National Institutes of Health. Outcomes Study to Assess STatin Residual Risk Reduction With EpaNova in HiGh CV Risk PatienTs With Hypertriglyceridemia (STRENGTH). US Natl Institutes Heal. 2015. https://clinicaltrials.gov/ct2/show/NCT02104817. Accessed 20 Feb 2015.
Lovaza. [Package Insert]. Research Triangle Park, NC: GlaxoSmithKline; 2008.
Vascepa. [Package Insert]. Bedminster, NJ: Amarin Pharmaceuticals Ireland Ltd; 2013.
Epanova. [Package Insert]. Wilmington, DE: AstraZeneca Pharmaceuticals LP; 2014.
Bottorff MB. Statin safety and drug interactions: clinical implications. Am J Cardiol. 2006;97:27C–31. doi:10.1016/j.amjcard.2005.12.007.
Choi HD, Shin WG, Lee J-Y, et al. (2014) Safety and efficacy of fibrate–statin combination therapy compared to fibrate monotherapy in patients with dyslipidemia: a meta-analysis. Vascul Pharmacol. pii:S1537–1891. doi:10.1016/j.vph.2014.11.002.
Tato F, Keller C, Wolgram G. Effects of fish Oil concentrate on lipoproteins and apolipoproteins in familial combined hyperlipidemia. Clin Investig. 1993;71(4):314–8.
Calabresi L, Donati D, Pazzucconi F, et al. Omacor in familial combined hyperlipidemia: effects on lipids and Low density lipoprotein subclasses. Atherosclerosis. 2000;148:387–96. doi:10.1016/S0021-9150(99)00267-1.
Rouis M, Dugi KA, Previato L, et al. Therapeutic response to medium-chain triglycerides and ω-3 fatty acids in a patient with the familial chylomicronemia syndrome. Arterioscler Thromb Vasc Biol. 1997;17:1400–6.
Richter WO, Jacob BG, Ritter MM, et al. Treatment of primary chylomicronemia Due to familial Hypertriglyceridemia by omega-3 fatty acids. Metabolism. 1992;41(10):1100–5.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Brandt, E.J., Davidson, M.H. (2015). The Role of Omega-3 Fatty Acids in Dyslipidemias. In: Banach, M. (eds) Combination Therapy In Dyslipidemia. Adis, Cham. https://doi.org/10.1007/978-3-319-20433-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-20433-8_5
Publisher Name: Adis, Cham
Print ISBN: 978-3-319-20432-1
Online ISBN: 978-3-319-20433-8
eBook Packages: MedicineMedicine (R0)