Skip to main content

The Role of Omega-3 Fatty Acids in Dyslipidemias

  • Chapter
Combination Therapy In Dyslipidemia

Abstract

Statins are the most widely prescribed lipid-lowering medications and have been shown to lower the relative risk for cardiovascular events by 20–50 %. However, despite their lipid lowering and cardioprotective effects, substantial residual cardiovascular risk persists in some patients taking statins, particularly in some subgroups, such as those with atherogenic dyslipidemia, i.e., high TG and low HDL. There has been significant controversy regarding the role of omega-3 fatty acid (OM3 FA) in the prevention and management of cardiovascular disease (CVD). However, there is clear scientific understanding of how OM3 FAs integrate with physiology to improve lipid serologies to potentially prevent cardiovascular disease. These mechanisms can be exploited for the modification of disease. Current studies on how to best take advantage of this implicate that OM3 FAs alter the course of CVD both for prevention of adverse cardiovascular outcomes and treatment of derangements in lipid serologies. Current guidelines and recommendations support their regular integration into the diet and supplementation for those with severe hypertriglyceridemia as adjunct therapy. Emerging data suggests that OM3 FAs may have implications in specific subpopulations. In particular, patients with elevated triglycerides may benefit from supplementation as combination therapy to statins and lifestyle changes, especially those with TGs ≥500 mg/dL and perhaps, pending results of ongoing trials, those with TGs ≥200 mg/dL and <500 mg/dL. Further studies should seek to assess those with high residual risk while on statin therapy, which is best estimated by measuring the affect on triglyceride rich lipoprotein-cholesterol (TRL-C).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cholesterol Treatment Trialists Collaborators. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81. doi:10.1016/S0140-6736(10)61350-5.

    Article  Google Scholar 

  2. Fruchart JC, Sacks F, Hermans MP, et al. The residual risk reduction initiative: a call to action to reduce residual vascular risk in patients with dyslipidemia. Am J Cardiol. 2008;102(4):319–35. doi:10.1016/j.amjcard.2008.10.002.

    Google Scholar 

  3. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–78. doi:10.1016/S0140-6736(05)67394-1.

    Article  CAS  PubMed  Google Scholar 

  4. Mihaylova B, Emberson J, Blackwell L, et al. The effects of lowering LDL cholesterol with statin therapy in people at Low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380(9841):581–90. doi:10.1016/S0140-6736(12)60367-5.

    Article  CAS  PubMed  Google Scholar 

  5. Manninen V, Tenkanen L, Koskinen P, et al. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki heart study. Implications for treatment. Circulation. 1992;85:37–45. doi:10.1161/01.CIR.85.1.37.

    Article  CAS  PubMed  Google Scholar 

  6. Bezafibrate Infarction Prevention Study. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation. 2000;102(1):21–7. doi:10.1161/01.CIR.102.1.21.

    Article  Google Scholar 

  7. The ACCORD Study Group. Relation of gemfibrozil treatment and high-density lipoprotein subpopulation profile with cardiovascular events in the veterans affairs high-density lipoprotein intervention trial. Metabolism. 2008;57(1):77–83. doi:10.1016/j.metabol.2007.08.009.

    Article  Google Scholar 

  8. The ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–74.

    Article  PubMed Central  Google Scholar 

  9. Scott R, O’Brien R, Fulcher G, et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009;32(3):493–8. doi:10.2337/dc08-1543. Clinical.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Mora S, Wenger NK, Demicco DA, et al. Determinants of residual risk in secondary prevention ptients treated with high- versus Low-dose statin T therapy: the Treating to New Targets (TNT) study. Circulation. 2012;125:1979–87. doi:10.1161/CIRCULATIONAHA.111.088591.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Sasaki J, Yokoyama M, Matsuzaki M, et al. Relationship between coronary artery disease and non-HDL-C, and effect of highly purified EPA on the risk of coronary artery disease in hypercholesterolemic patients treated with statins: Sub-analysis of the Japan EPA Lipid Intervention Study (JELIS). J Atheroscler Thromb. 2012;19:194–204. doi:10.5551/jat.8326.

    Article  CAS  PubMed  Google Scholar 

  12. The AIM-HIGH Investigators. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67.

    Article  Google Scholar 

  13. Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–8. doi:10.1016/S0140-6736(07)60527-3.

    Article  CAS  PubMed  Google Scholar 

  14. Mokdad A, Bowman B, Ford E, et al. The continuing epidemics of obesity and diabetes in the United States. JAMA. 2001;286(10):1195–200. doi:10.1001/jama.286.10.1195.

    Article  CAS  PubMed  Google Scholar 

  15. D’Agostino R, Hamman R, Karter A, et al. Cardiovascular disease risk factors predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes Care. 2004;27(9):2234–40. doi:10.2337/diacare.27.9.2234.

    Article  PubMed  Google Scholar 

  16. Cowie CC, Rust KF, Byrd-Hold DD, et al. Prevalence of diabetes and impaired fasting glucose in adults in the U.S. Population: national health and nutrition examination survey 1999–2002. Diabetes Care. 2006;29(6):1263–8.

    Article  PubMed  Google Scholar 

  17. Cowie CC, Rust KF, Byrd-Hold DD, et al. Prevalence of diabetes and high risk for population in 1988–2006. Diabetes Care. 2010;33(3). doi:10.2337/dc09-1524.

  18. Ford ES, Li C, Zhao G, et al. Hypertriglyceridemia and its pharmacologic treatment among US adults. Arch Intern Med. 2009;169(6):572–8. doi:10.1001/archinternmed.2008.599.

    Article  CAS  PubMed  Google Scholar 

  19. Miller M, Stone NJ, Ballantyne C, et al. Triglycerides and cardiovascular disease: a scientific statement from the american heart association. Circulation. 2011;123:2292–333. doi:10.1161/CIR.0b013e3182160726.

    Article  PubMed  Google Scholar 

  20. Menke A, Rust KF, Fradkin J, et al. Associations between trends in race/ethnicity, aging, and body mass index with diabetes prevalence in the United States. Ann Intern Med. 2014;161(5):328. doi:10.7326/M14-0286.

    Article  PubMed  Google Scholar 

  21. Fox CS, Pencina MJ, Meigs JB, et al. Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: the Framingham heart study. Circulation. 2006;113:2914–8. doi:10.1161/CIRCULATIONAHA.106.613828.

    Article  PubMed  Google Scholar 

  22. Flegal KM. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. 2012;307(5):491. doi:10.1001/jama.2012.39.

    Article  PubMed  Google Scholar 

  23. Carroll MD. Trends in lipids and lipoproteins in US adults, 1988–2010. JAMA. 2012;308(15):1545. doi:10.1001/jama.2012.13260.

    Article  CAS  PubMed  Google Scholar 

  24. Colussi G, Catena C, Baroselli S, et al. Omega-3 fatty acids: from biochemistry to their clinical Ese in the prevention of cardiovascular disease. Recent Pat Cardiovasc Drug Discov. 2007;2:13–21. doi:10.2174/157489007779606158.

    Article  CAS  PubMed  Google Scholar 

  25. Abedi E, Sahari MA. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci Nutr. 2014;5(2):443–63. doi:10.1002/fsn3.121.

    Article  Google Scholar 

  26. Kaur N, Chugh V, Gupta AK. Essential fatty acids as functional components of foods- a review. J Food Sci Technol. 2012;51(October):1–15. doi:10.1007/s13197-012-0677-0.

    Google Scholar 

  27. Bays HE, Tighe AP, Sadovsky R, et al. Prescription omega-3 fatty acids and their lipid effects: physiologic mechanisms of action and clinical implications. Expert Rev Cardiovasc Ther. 2008;6:391–409. doi:10.1586/14779072.6.3.391.

    Article  CAS  PubMed  Google Scholar 

  28. Harris WS, Poston WC, Haddock CK. Tissue n – 3 and n – 6 fatty acids and risk for coronary heart disease events. Atherosclerosis. 2007;193:1–10. doi:10.1016/j.atherosclerosis.2007.03.018.

    Article  CAS  PubMed  Google Scholar 

  29. Harris WS, Miller M, Tighe AP, et al. Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis. 2008;197:12–24. doi:10.1016/j.atherosclerosis.2007.11.008.

    Article  CAS  PubMed  Google Scholar 

  30. Eslick G, Peter H, Smith C, et al. Benefits of fish Oil supplementation in hyperlipidemia: a systematic review and meta-analysis. Int J Cardiol. 2009;136(1):4016.

    Google Scholar 

  31. Jacobson T, Glickstein S, Rowe J, et al. Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review. J Clin Lipidol. 2012;6:5–18. doi:10.1016/j.jacl.2011.10.018.

    Article  PubMed  Google Scholar 

  32. The TG and HDL Working Group of the Exome Sequencing Project. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31. doi:10.1056/NEJMoa1307095.

    Article  Google Scholar 

  33. Curtiss LK. ApoE in atherosclerosis. Arterioscler Thromb Vasc Biol. 2000;20:1852–3.

    Article  CAS  PubMed  Google Scholar 

  34. Mendivil CO, Zheng C, Furtado J, et al. Metabolism of very-low-density lipoprotein and Low-density lipoprotein containing apolipoprotein C-III and not other small apolipoproteins. Arterioscler Thromb Vasc Biol. 2010;30:239–45. doi:10.1161/ATVBAHA.109.197830.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mendivil CO, Rimm EB, Furtado J, et al. Apolipoprotein E in VLDL and LDL with apolipoprotein C-III is associated with a lower rrisk of coronary heart disease. J Am Heart Assoc. 2013;2(Ldl):e000130. doi:10.1161/JAHA.113.000130.

    PubMed Central  PubMed  Google Scholar 

  36. Zheng C, Khoo C, Furtado J, et al. Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense Low-density lipoprotein phenotype. Circulation. 2010;121:1722–34. doi:10.1161/CIRCULATIONAHA.109.875807.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kawakami A, Yoshida M. Apolipoprotein CIII links dyslipidemia with atherosclerosis. J Atheroscler Thromb. 2009;16:6–11. doi:10.5551/jat.E607.

    Article  CAS  PubMed  Google Scholar 

  38. Zheng C. Updates on apolipoprotein CIII: fulfilling promise as a therapeutic target for hypertriglyceridemia and cardiovascular disease. Curr Opin Lipidol. 2014;25:35–9. doi:10.1097/MOL.0000000000000040.

    Article  CAS  PubMed  Google Scholar 

  39. Shachter NS. Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Curr Opin Lipidol. 2001;12:297–304. doi:10.1097/00041433-200106000-00009.

    Article  CAS  PubMed  Google Scholar 

  40. Lemieux I, Salomon H, Després J-P. Contribution of apo CIII reduction to the greater effect of 12-week micronized fenofibrate than atorvastatin therapy on triglyceride levels and LDL size in dyslipidemic patients. Ann Med. 2003;35(5):442–8. doi:10.1016/S1567-5688(02)80392-0.

    Article  CAS  PubMed  Google Scholar 

  41. Davidson MH, Maki KC, Bays H, et al. Effects of prescription omega-3-acid ethyl esters on lipoprotein particle concentrations, apolipoproteins AI and CIII, and lipoprotein-associated phospholipase A2 mass in statin-treated subjects with hypertriglyceridemia. J Clin Lipidol. 2009;3(5):332–40. doi:10.1016/j.jacl.2009.08.001.

    Article  PubMed  Google Scholar 

  42. Belfort R, Berria R, Cornell J, et al. Fenofibrate reduces systemic inflammation markers independent of its effects on lipid and glucose metabolism in patients with the metabolic syndrome. J Clin Endocrinol Metab. 2010;95(2):829–36. doi:10.1210/jc.2009-1487.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Maki KC, Bays HE, Dicklin MR, et al. Effects of prescription omega-3-acid ethyl esters, coadministered with atorvastatin, on circulating levels of lipoprotein particles, apolipoprotein CIII, and lipoprotein-associated phospholipase A2 mass in men and women with mixed dyslipidemia. J Clin Lipidol. 2011;5(6):483–92. doi:10.1016/j.jacl.2011.09.001.

    Article  PubMed  Google Scholar 

  44. Morton A, Furtado J, Amerine W, et al. The effect of omega-3 carboxylic acids on apolipoprotein CIII containing lipoproteins in moderate to severe hypertriglyceridemia. Circulation. 2014;130(Suppl 2): Abstract 16864.

    Google Scholar 

  45. Von Schacky C. Omega-3 index and cardiovascular health. Nutrients. 2014;6:799–814. doi:10.3390/nu6020799.

    Article  Google Scholar 

  46. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129 (25 Suppl 2):S1–45. doi:10.1161/01.cir.0000437738.63853.7a.

  47. Grundy SM, Arai H, Barter P, et al. An international atherosclerosis society position paper: global recommendations for the management of dyslipidemia – full report. J Clin Lipidol. 2014;8:29–60. doi:10.1016/j.jacl.2013.12.005.

    Article  Google Scholar 

  48. Reiner Ž, Catapano AL, De Backer G, et al. ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J. 2011;32(2011):1769–818. doi:10.1093/eurheartj/ehr158.

    PubMed  Google Scholar 

  49. Jellinger PS, Smith DA, Mehta AE, et al. American Association of Clinical Endocrinologists’ guidelines for management of dyslipidemia and prevention of atherosclerosis. Endocr Pract. 2012;18(C):1–78. http://www.ncbi.nlm.nih.gov/pubmed/22522068.

  50. Saito Y, Yokoyama M, Origasa H, et al. Effects of EPA on coronary artery disease in hypercholesterolemic patients with multiple risk factors: Sub-analysis of primary prevention cases from the Japan EPA Lipid Intervention Study (JELIS). Atherosclerosis. 2008;200:135–40. doi:10.1016/j.atherosclerosis.2008.06.003.

    Article  CAS  PubMed  Google Scholar 

  51. Guyton JR, Slee AE, Anderson T, et al. Relationship of lipoproteins to cardiovascular events: the AIM-HIGH Trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides and Impact on Global Health Outcomes). J Am Coll Cardiol. 2013;62(17):1580–4. doi:10.1016/j.jacc.2013.07.023.

    Article  CAS  PubMed  Google Scholar 

  52. Frick M, Elo O, Haapa K, et al. Helsinki heart study: primary-prevention trial with gemfibrozil in middle-aged Men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987;317(20):1237–45.

    Article  CAS  PubMed  Google Scholar 

  53. Tenkanen L, Manttari M, Kovanen P, et al. Gemfibrozil in the treatment of dyslipidemia: an 18-year mortality follow-up of the Helsinki Heart Study. Arch Intern Med. 2006;166(7):743–8.

    Article  CAS  PubMed  Google Scholar 

  54. Rubins H, Robins S, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med. 1999;341(6):410–8.

    Article  CAS  PubMed  Google Scholar 

  55. Keech A, Simes R, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–61. doi:10.1016/S0140-6736(05)67667-2.

    Article  CAS  PubMed  Google Scholar 

  56. Faergeman O, Holme I, Fayyad R, et al. Plasma triglycerides and cardiovascular events in the Treating to New Targets and Incremental Decrease in End-Points Through Aggressive Lipid Lowering trials of statins in patients with coronary artery disease. Am J Cardiol. 2009;104(4):459–63. doi:10.1016/j.amjcard.2009.04.008.

    Article  CAS  PubMed  Google Scholar 

  57. Cholesterol Treatment Trialists Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–78. doi:10.1016/S0140-6736(05)67394-1.

    Article  Google Scholar 

  58. Jacobson TA, Ito MK, Maki KC, et al. National lipid association recommendations for patient-centered management of dyslipidemia: part 1 – executive summary. J Clin Lipidol. 2014;8(5):473–88. doi:10.1016/j.jacl.2014.07.007.

    Article  PubMed  Google Scholar 

  59. Davidson MH, Maki KC, Pearson TA, et al. Results of the National Cholesterol Education (NCEP) program evaluation project utilizing novel T-technology (NEPTUNE) II survey and implications for treatment under the recent NCEP writing group recommendations. Am J Cardiol. 2005;96:556–63. doi:10.1016/j.amjcard.2005.04.019.

    Article  PubMed  Google Scholar 

  60. Fedder DO, Koro CE, Italien GJL. Clinical investigation and reports New national cholesterol education program III guidelines for primary prevention lipid-lowering drug therapy. Circulation. 2002;2002:152–6.

    Article  Google Scholar 

  61. Mazzone T, Meyer PM, Kondos GT, et al. Relationship of traditional and nontraditional cardiovascular risk factors to coronary artery calcium in type 2 diabetes. Diabetes. 2007;56(3):849–55. doi:10.2337/db06-0935.

    Article  CAS  PubMed  Google Scholar 

  62. Maki KC, Bays HE, Dicklin MR. Treatment options for the management of hypertriglyceridemia: strategies based on the best-available evidence. J Clin Lipidol. 2012;6:413–26. doi:10.1016/j.jacl.2012.04.003.

    Article  PubMed  Google Scholar 

  63. Varbo A, Benn M, Tybjærg-Hansen A, et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61(4):427–36. doi:10.1016/j.jacc.2012.08.1026.

    Article  CAS  PubMed  Google Scholar 

  64. Mahley R, Rall S. Type III hyperlipoproteinemia (dysbetalipoproteinemia): the role of apolipoprotinemia E in normal and abnormal lipoprotein metabolism. In: Scriver A, Beader W, Sly S, Valle D, editors. The metabolic and molecular basis of inherited disease. New York: McGraw Hill; 1995. p. 1953–80.

    Google Scholar 

  65. Assmann G, Schulte H, Funke H, et al. The emergence of triglycerides as a significant independent risk factor in coronary artery disease. Eur Heart J. 1998;19:M8–14.

    PubMed  Google Scholar 

  66. Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease: 10 158 incident cases among 262 525 participants in 29 western prospective studies. Circulation. 2007;115:450–8. doi:10.1161/CIRCULATIONAHA.106.637793.

    Article  CAS  PubMed  Google Scholar 

  67. Hokanson J, Austin M. Triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a metaanalysis of population-based prospective. J Cardiovasc Risk. 1996;3:213–19. http://cpr.sagepub.com/content/3/2/213.short.

  68. Moneta GL. Major lipids, apolipoproteins, and risk of vascular disease. Yearb Vasc Surg. 2010;2010(18):42–4. doi:10.1016/S0749-4041(10)79320-9.

    Article  Google Scholar 

  69. Cui Y, Blumenthal RS, Flaws JA, et al. Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Arch Intern Med. 2001;161:1413–9.

    Article  CAS  PubMed  Google Scholar 

  70. Liu J, Sempos CT, Donahue RP, et al. Non-high-density lipoprotein and very-low-density lipoprotein cholesterol and their risk predictive values in coronary heart disease. Am J Cardiol. 2006;98:1363–8. doi:10.1016/j.amjcard.2006.06.032.

    Article  CAS  PubMed  Google Scholar 

  71. Arsenault BJ, Rana JS, Stroes ESG, et al. Beyond low-density lipoprotein cholesterol. Respective contributions of non-high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healt. J Am Coll Cardiol. 2009;55(1):35–41. doi:10.1016/j.jacc.2009.07.057.

    Article  PubMed  Google Scholar 

  72. Boekholdt SM, Arsenault BJ, Mora S, et al. Association of LDL cholesterol, non–HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins. JAMA. 2012;307(12):1302–9.

    Article  CAS  PubMed  Google Scholar 

  73. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626–35. doi:10.1016/S0140-6736(14)61177-6.

    Article  CAS  PubMed  Google Scholar 

  74. Hennig B, Chung BH, Watkins BA, et al. Disruption of endothelial barrier function by lipolytic remnants of triglyceride-rich lipoproteins. Atherosclerosis. 1992;95:235–47. doi:10.1016/0021-9150(92)90027-E.

    Article  CAS  PubMed  Google Scholar 

  75. Botham KM, Wheeler-Jones CPD. Postprandial lipoproteins and the molecular regulation of vascular homeostasis. Prog Lipid Res. 2013;52(4):446–64. doi:10.1016/j.plipres.2013.06.001.

    Article  CAS  PubMed  Google Scholar 

  76. Bravo E, Napolitano M. Mechanisms involved in chylomicron remnant lipid uptake by macrophages. Biochem Soc Trans. 2007;35:459–63. doi:10.1042/BST0350459.

    Article  CAS  PubMed  Google Scholar 

  77. Nakajima K, Nakano T, Tokita Y, et al. Postprandial lipoprotein metabolism: VLDL vs chylomicrons. Clin Chim Acta. 2011;412(15–16):1306–18. doi:10.1016/j.cca.2011.04.018.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Tomkin GH, Owens D. Abnormalities in apo B-containing lipoproteins in diabetes and atherosclerosis. Diabetes Metab Res Rev. 2001;17(1):27–43. doi:10.1002/dmrr.179.

    Article  CAS  PubMed  Google Scholar 

  79. Vine DF, Glimm DR, Proctor SD. Intestinal lipid transport and chylomicron production: possible links to exacerbated atherogenesis in a rodent model of the metabolic syndrome. Atheroscler Suppl. 2008;9:69–76. doi:10.1016/j.atherosclerosissup.2008.05.004.

    Article  CAS  PubMed  Google Scholar 

  80. Mora S, Otvos JD, Rifai N, et al. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation. 2009;119:931–9. doi:10.1161/CIRCULATIONAHA.108.816181.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Pischon T, Girman CJ, Sacks FM, et al. Non-high-density lipoprotein cholesterol and apolipoprotein B in the prediction of coronary heart disease in men. Circulation. 2005;112:3375–83. doi:10.1161/CIRCULATIONAHA.104.532499.

    Article  CAS  PubMed  Google Scholar 

  82. Mendivil CO, Rimm EB, Furtado J, et al. Low-density lipoproteins containing apolipoprotein C-III and the risk of coronary heart disease. Circulation. 2011;124(19):2065–72. doi:10.1161/CIRCULATIONAHA.111.056986.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Burr M. Reflections on the Diet and Reinfarction Trial (DART). Eur Hear J Suppl. 2001;3:D75–8. doi:10.1016/S1520-765X(01)90124-5.

    Article  Google Scholar 

  84. Harris W, Ginsberg H, Arunakul N, et al. Safety and efficacy of omacor in severe hypertriglyceridemia. J Cardiovasc Risk. 1997;4:385–91.

    Article  CAS  PubMed  Google Scholar 

  85. GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-prevenzione trial. Lancet. 1999;354:447–55. doi:S0140673699070725 [pii].

    Article  Google Scholar 

  86. Kromhout D, Giltay EJ, Geleijnse JM. N-3 fatty acids and cardiovascular events after myocardial infarction. N Engl J Med. 2010;363:2015–26. doi:10.1056/NEJMoa1003603.

    Article  CAS  PubMed  Google Scholar 

  87. The ORIGIN, Investigators T. n–3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367:309–18. doi:10.1056/NEJMoa1203859.

    Article  Google Scholar 

  88. The Risk and Prevention Study Collaborative Group. n–3 fatty acids in patients with multiple cardiovascular risk factors. N Engl J Med. 2013;368:1800–8. doi:10.1056/NEJMoa1205409.

    Article  Google Scholar 

  89. Rizos EC, Ntzani EE, Bika E, et al. Association between omega-3 fatty acid. JAMA. 2012;308:1024–33. doi:10.1001/2012.jama.11374.

    Article  CAS  PubMed  Google Scholar 

  90. Eussen SRBM, Geleijnse JM, Giltay EJ, et al. Effects of n-3 fatty acids on major cardiovascular events in statin users and Non-users with a history of myocardial infarction. Eur Heart J. 2012;33:1582–8. doi:10.1093/eurheartj/ehr499.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Contacos C, Barter PJ, Sullivan DR. Effect of pravastatin and omega-3 fatty acids on plasma lipids and lipoproteins in patients with combined hyperlipidemia. Arterioscler Thromb. 1993;13:1755–62.

    Article  CAS  PubMed  Google Scholar 

  92. Nordøy A, Bønaa KH, Nilsen H, et al. Effects of simvastatin and omega-3 fatty acids on plasma lipoproteins and lipid peroxidation in patients with combined hyperlipidaemia. J Intern Med. 1998;243:163–70.

    Article  PubMed  Google Scholar 

  93. Davidson MH, Stein EA, Bays HE, et al. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin Ther. 2007;29(7):1354–67. doi:10.1016/j.clinthera.2007.07.018.

    Article  CAS  PubMed  Google Scholar 

  94. Ballantyne CM, Bays HE, Kastelein JJ, et al. Efficacy and safety of eicosapentaenoic acid ethyl ester (AMR101) therapy in statin-treated patients with persistent high triglycerides (from the ANCHOR study). Am J Cardiol. 2012;110:984–92. doi:10.1016/j.amjcard.2012.05.031.

    Article  CAS  PubMed  Google Scholar 

  95. Bays HE, Ballantyne CM, Kastelein JJ, et al. Eicosapentaenoic Acid Ethyl Ester (AMR101) Therapy in Patients with Very High Triglyceride Levels (from the Multi-center, placebo-controlled, randomized, double-blind, 12-week study with an open-label extension [MARINE] Trial). Am J Cardiol. 2011;108(502):682–90. doi:10.1016/j.amjcard.2011.04.015.

    Article  CAS  PubMed  Google Scholar 

  96. Kastelein JJP, Maki KC, Susekov A, et al. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia: the EpanoVa for lowering very high triglyceridEs (EVOLVE) trial. J Clin Lipidol. 2014;8:94–106. doi:10.1016/j.jacl.2013.10.003.

    Article  PubMed  Google Scholar 

  97. Maki KC, Orloff DG, Nicholls SJ, et al. A highly bioavailable omega-3 free fatty acid formulation improves the cardiovascular risk profile in high-risk, statin-treated patients with residual hypertriglyceridemia (the ESPRIT trial). Clin Ther. 2013;35(9):1400–11. doi:10.1016/j.clinthera.2013.07.420.

    Article  CAS  PubMed  Google Scholar 

  98. Offman E, Marenco T, Ferber S, et al. Steady-state bioavailability of prescription omega-3 on a low-fat diet is significantly improved with a free fatty acid formulation compared with an ethyl ester formulation: the ECLIPSE II study. Vasc Health Risk Manag. 2013;9:563–73. doi:10.2147/VHRM.S50464.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Davidson MH, Johnson J, Rooney MW, et al. A novel omega-3 free fatty acid formulation has dramatically improved bioavailability during a low-fat diet compared with omega-3-acid ethyl esters: the ECLIPSE (epanova® compared to Lovaza® in a pharmacokinetic single-dose evaluation) study. J Clin Lipidol. 2012;6(6):573–84. doi:10.1016/j.jacl.2012.01.002.

    Article  PubMed  Google Scholar 

  100. Research and Development. 2014. http://www.amarincorp.com/products.html. Accessed 20 Feb 2015.

  101. US National Institutes of Health. A study of AMR101 to evaluate its ability to reduce cardiovascular events in high risk patients with hypertriglyceridemia and on statin. The primary objective is to evaluate the effect of 4 g/Day AMR101 for preventing the occurrence of a first Major Cardi. US Natl Institutes Heal. 2015. https://www.clinicaltrial.gov/ct2/show/NCT01492361. Accessed 20 Feb 2015.

  102. US National Institutes of Health. Outcomes Study to Assess STatin Residual Risk Reduction With EpaNova in HiGh CV Risk PatienTs With Hypertriglyceridemia (STRENGTH). US Natl Institutes Heal. 2015. https://clinicaltrials.gov/ct2/show/NCT02104817. Accessed 20 Feb 2015.

  103. Lovaza. [Package Insert]. Research Triangle Park, NC: GlaxoSmithKline; 2008.

    Google Scholar 

  104. Vascepa. [Package Insert]. Bedminster, NJ: Amarin Pharmaceuticals Ireland Ltd; 2013.

    Google Scholar 

  105. Epanova. [Package Insert]. Wilmington, DE: AstraZeneca Pharmaceuticals LP; 2014.

    Google Scholar 

  106. Bottorff MB. Statin safety and drug interactions: clinical implications. Am J Cardiol. 2006;97:27C–31. doi:10.1016/j.amjcard.2005.12.007.

    Article  CAS  PubMed  Google Scholar 

  107. Choi HD, Shin WG, Lee J-Y, et al. (2014) Safety and efficacy of fibrate–statin combination therapy compared to fibrate monotherapy in patients with dyslipidemia: a meta-analysis. Vascul Pharmacol. pii:S1537–1891. doi:10.1016/j.vph.2014.11.002.

  108. Tato F, Keller C, Wolgram G. Effects of fish Oil concentrate on lipoproteins and apolipoproteins in familial combined hyperlipidemia. Clin Investig. 1993;71(4):314–8.

    Article  CAS  PubMed  Google Scholar 

  109. Calabresi L, Donati D, Pazzucconi F, et al. Omacor in familial combined hyperlipidemia: effects on lipids and Low density lipoprotein subclasses. Atherosclerosis. 2000;148:387–96. doi:10.1016/S0021-9150(99)00267-1.

    Article  CAS  PubMed  Google Scholar 

  110. Rouis M, Dugi KA, Previato L, et al. Therapeutic response to medium-chain triglycerides and ω-3 fatty acids in a patient with the familial chylomicronemia syndrome. Arterioscler Thromb Vasc Biol. 1997;17:1400–6.

    Article  CAS  PubMed  Google Scholar 

  111. Richter WO, Jacob BG, Ritter MM, et al. Treatment of primary chylomicronemia Due to familial Hypertriglyceridemia by omega-3 fatty acids. Metabolism. 1992;41(10):1100–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Davidson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brandt, E.J., Davidson, M.H. (2015). The Role of Omega-3 Fatty Acids in Dyslipidemias. In: Banach, M. (eds) Combination Therapy In Dyslipidemia. Adis, Cham. https://doi.org/10.1007/978-3-319-20433-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20433-8_5

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-20432-1

  • Online ISBN: 978-3-319-20433-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics