Advertisement

Phytochelatin and Oxidative Stress Under Heavy Metal Stress Tolerance in Plants

  • Weitao Liu
  • Xue Zhang
  • Lichen Liang
  • Chen Chen
  • Shuhe WeiEmail author
  • Qixing Zhou

Abstract

With the rapid developing of industry and agriculture, heavy metal pollution in environment has been both serious and widespread worldwide. To cope with adverse environmental heavy metal toxicity, plants have evolved a variety of adaptive responses, which include immobilization, exclusion, chelation, and compartmentalization of metal ions and often involve metal-binding ligands. Particularly, phytochelatins (PCs), a family of peptides, have been regarded as the best-characterized heavy metal chelators especially in detoxication of heavy metals such as cadmium (Cd) in plants and some microorganisms. Generally, PCs have the general structure (γ-Glu-Cys) n -Gly (n = 2–11) and are produced by the enzyme phytochelatin synthases, which can bind to various metals including Cd, As Cu, or Zn. In this chapter, we focused on the biosynthesis and function of PCs and the role of PCs in metal detoxification and tolerance. Finally, the molecular biology of PCs has been briefly reviewed.

Keywords

Heavy metals Plants Oxidative damage Tolerance Phytochelatins 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41471411, 21107052, 31270540, 31070455, and 40971184). The authors would also like to thank the Open Fund of Key Laboratory of Contaminated Environment Control and Regional Ecology Safety (grant No. SYU-KF-L-03) & Open Fund of Key Laboratory of Regional Environment Eco-remediation, Education Ministry (grant No. SYU-KF-E-03) for a partial support.

References

  1. Alcántara E, Romera FJ, Cañete M, Manuel D (1994) Effects of heavy metals on both induction and function of root Fe (III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–1898CrossRefGoogle Scholar
  2. Andra SS, Datta R, Sarkar D, Makris KC, Mullens CP, Sahi SV, Bach SB (2009) Induction of lead-binding phytochelatins in Vetiver Grass [(L.)]. J Environ Qual 38:868–877PubMedCrossRefGoogle Scholar
  3. Andra SS, Datta R, Sarkar D, Makris KC, Mullens CP, Sahi SV, Bach SBH (2010) Synthesis of phytochelatins in vetiver grass upon lead exposure in the presence of phosphorus. Plant Soil 326:171–185CrossRefGoogle Scholar
  4. Athar R, Ahmad M (2002) Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living azotobacter. Water Air Soil Pollut 138:165–180CrossRefGoogle Scholar
  5. Bajguz A (2002) Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. J Plant Physiol 159:321–324CrossRefGoogle Scholar
  6. Baldisserotto C, Ferroni L, Anfuso E, Pagnoni A, Fasulo MP, Pancaldi S (2007) Responses of Trapa natans L. floating laminae to high concentrations of manganese. Protoplasma 231:65–82PubMedCrossRefGoogle Scholar
  7. Beauford W, Barber J, Barringer AR (1977) Uptake and distribution of mercury within higher plants. Physiol Plant 39:261–265CrossRefGoogle Scholar
  8. Bingham FT, Pereyea F, Jarrell WM (1986) Metal toxicity to agricultural crops. Met Ions Biol Syst 20:119–156Google Scholar
  9. Boojar MMA, Tavakoli Z (2010) Role of antioxidant enzyme responses and phytochelatins in tolerance strategies of Alhagi camelorum Fisch growing on copper mine. Acta Bot Croat 69:107–121Google Scholar
  10. Brown PH, Welch RM, Cary EE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiol 85:801–803PubMedCentralPubMedCrossRefGoogle Scholar
  11. Burton K, Morgan E, Roig A (1984) The influence of heavy metals upon the growth of sitka-spruce in South Wales forests. Plant Soil 78:271–282CrossRefGoogle Scholar
  12. Cazale AC, Clemens S (2001) Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS Lett 507:215–219PubMedCrossRefGoogle Scholar
  13. Chen J, Goldsbrough PB (1994) Increased activity of γ-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiol 106:233–239PubMedCentralPubMedGoogle Scholar
  14. Chen A, Komives EA, Schroeder JI (2006) An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiol 141:108–120PubMedCentralPubMedCrossRefGoogle Scholar
  15. Chen L, Guo Y, Yang L, Wang Q (2008) Synergistic defensive mechanism of phytochelatins and antioxidative enzymes in Brassica chinensis L. against Cd stress. Chin Sci Bull 53:1503–1511Google Scholar
  16. Chen CY, Huang DJ, Liu JQ (2009a) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean 37:304–313Google Scholar
  17. Chen L, Yang L, Wang Q (2009b) In vivo phytochelatins and Hg-phytochelatin complexes in Hg-stressed Brassica chinensis L. Metallomics 1:101–106CrossRefGoogle Scholar
  18. Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332PubMedCrossRefGoogle Scholar
  19. Clemens S, Peršoh D (2009) Multi-tasking phytochelatin synthases. Plant Sci 177:266–271CrossRefGoogle Scholar
  20. Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333PubMedCentralPubMedCrossRefGoogle Scholar
  21. Cobbett CS (2000a) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216PubMedCrossRefGoogle Scholar
  22. Cobbett CS (2000b) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832PubMedCentralPubMedCrossRefGoogle Scholar
  23. Cobbett CS (2001) Heavy metal detoxification in plants: phytochelatin biosynthesis and function. IUBMB Life 51:183–188CrossRefGoogle Scholar
  24. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182PubMedCrossRefGoogle Scholar
  25. Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330PubMedCrossRefGoogle Scholar
  26. Collin-Hansen C, Pedersen SA, Andersen RA, Steinnes E (2007) First report of phytochelatins in a mushroom: induction of phytochelatins by metal exposure in Boletus edulis. Mycologia 99:161–174PubMedCrossRefGoogle Scholar
  27. Dago À, González I, Ariño C, Manuel Díaz-Cruz J, Esteban M (2014) Chemometrics applied to the analysis of induced phytochelatins in Hordeum vulgare plants stressed with various toxic non-essential metals and metalloids. Talanta 118:201–209PubMedCrossRefGoogle Scholar
  28. Davies K, Davies M, Francis D (1991) The influence of an inhibitor of phytochelatin synthesis on root growth and root meristematic activity in Festuca rubra L. in response to zinc. New Phytol 118:565–570CrossRefGoogle Scholar
  29. de Knecht JA, van Dillen M, Koevoets PL, Schat H, Verkleij JA, Ernst WH (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris (chain length distribution and sulfide incorporation). Plant Physiol 104:255–261PubMedCentralPubMedGoogle Scholar
  30. De Vos CH, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858PubMedCentralPubMedCrossRefGoogle Scholar
  31. Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257CrossRefGoogle Scholar
  32. Dong R, Formentin E, Losseso C, Carimi F, Benedetti P, Terzi M, Schiavo F (2005) Molecular cloning and characterization of a phytochelatin synthase gene, PvPCS1, from Pteris vittata L. J Ind Microbiol Biotechnol 32:527–533PubMedCrossRefGoogle Scholar
  33. Ducruix C, Junot C, Fievet JB, Villiers F, Ezan E, Bourguignon J (2006) New insights into the regulation of phytochelatin biosynthesis in A. thaliana cells from metabolite profiling analyses. Biochimie 88:1733–1742PubMedCrossRefGoogle Scholar
  34. Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. and C. Presl). Planta 214:635–640PubMedCrossRefGoogle Scholar
  35. Elangovan D, Chalakh M (2006) Arsenic pollution in west Bengal. Tech Digest 9:31–35Google Scholar
  36. Estrella-Gómez N, Mendoza-Cozatl D, Moreno-Sanchez R, Gonzalez-Mendoza D, Zapata-Perez O, Martinez-Hernandez A, Santamaria JM (2009) The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb2+ by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity. Aquat Toxicol 91:320–328PubMedCrossRefGoogle Scholar
  37. Figueira E, Freitas R, Guasch H, Almeida SP (2014) Efficiency of cadmium chelation by phytochelatins in Nitzschia palea (Kützing) W. Smith. Ecotoxicology 23:285–292PubMedCrossRefGoogle Scholar
  38. Figueroa JAL, Wrobel K, Afton S, Caruso JA, Felix Gutierrez Corona J, Wrobel K (2008) Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico. Chemosphere 70:2084–2091PubMedCrossRefGoogle Scholar
  39. Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321CrossRefGoogle Scholar
  40. Gaur J, Rai L (2001) Heavy metal tolerance in algae. In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses. Springer, BerlinGoogle Scholar
  41. Gekeler W, Grill E, Winnacker EL, Zenk MH (1989) Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsch 44:361–369Google Scholar
  42. Gong JM, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA 100:10118–10123PubMedCentralPubMedCrossRefGoogle Scholar
  43. Gonzalez-Mendoza D, Moreno AQ, Zapata-Perez O (2007) Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquat Toxicol 83:306–314PubMedCrossRefGoogle Scholar
  44. Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676PubMedCrossRefGoogle Scholar
  45. Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443PubMedCentralPubMedCrossRefGoogle Scholar
  46. Grill E, Thumann J, Winnacker EL, Zenk MH (1988) Induction of heavy-metal binding phytochelatins by inoculation of cell cultures in standard media. Plant Cell Rep 7:375–378PubMedGoogle Scholar
  47. Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842PubMedCentralPubMedCrossRefGoogle Scholar
  48. Gupta M, Rai U, Tripathi R, Chandra P (1995) Lead induced changes in glutathione and phytochelatin in Hydrilla verticillata (lf) Royle. Chemosphere 30:2011–2020CrossRefGoogle Scholar
  49. Gupta M, Tripathi RD, Rai UN, Chandra P (1998) Role of glutathione and phytochelatin in Hydrilla verticillata (lf) Royle and Vallisneria spiralis L. under mercury stress. Chemosphere 37:785–800Google Scholar
  50. Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1163PubMedCentralPubMedCrossRefGoogle Scholar
  51. Haag-Kerwer A, Schafer HJ, Heiss S, Walter C, Rausch T (1999) Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J Exp Bot 50:1827–1835CrossRefGoogle Scholar
  52. Haghiri F (1974) Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc, and soil temperature. J Environ Qual 3:180–183CrossRefGoogle Scholar
  53. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11PubMedCrossRefGoogle Scholar
  54. Hirata K, Tsuji N, Miyamoto K (2005) Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. J Biosci Bioeng 100:593–599PubMedCrossRefGoogle Scholar
  55. Howden R, Andersen CR, Goldsbrough PB, Cobbett CS (1995a) A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107:1067–1073PubMedCentralPubMedCrossRefGoogle Scholar
  56. Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995b) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066PubMedCentralPubMedCrossRefGoogle Scholar
  57. Iglesia-Turino S, Febrero A, Jauregui O, Caldelas C, Araus JL, Bort J (2006) Detection and quantification of unbound phytochelatin 2 in plant extracts of Brassica napus grown with different levels of mercury. Plant Physiol 142:742–749PubMedCentralPubMedCrossRefGoogle Scholar
  58. Inouhe M (2005) Phytochelatins. Braz J Plant Physiol 17:65–78CrossRefGoogle Scholar
  59. Inouhe M, Ito R, Ito S, Sasada N, Tohoyama H, Joho M (2000) Azuki bean cells are hypersensitive to cadmium and do not synthesize phytochelatins. Plant Physiol 123:1029–1036PubMedCentralPubMedCrossRefGoogle Scholar
  60. Khabaz-Saberi H, Rengel Z, Wilson R, Setter TL (2010) Variation of tolerance to manganese toxicity in Australian hexaploid wheat. J Plant Nutr Soil Sci 173:103–112CrossRefGoogle Scholar
  61. Klapheck S, Fliegner W, Zimmer I (1994) Hydroxymethyl-phytochelatins [(γ-glutamylcysteine) n-serine] are metal-induced peptides of the poaceae. Plant Physiol 104:1325–1332PubMedCentralPubMedCrossRefGoogle Scholar
  62. Klapheck S, Schlunz S, Bergmann L (1995) Synthesis of phytochelatins and homo-phytochelatins in Pisum sativum L. Plant Physiol 107:515–521PubMedCentralPubMedGoogle Scholar
  63. Kneer R, Zenk MH (1992) Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry 31:2663–2667CrossRefGoogle Scholar
  64. Kondo N, Imai K, Isobe M, Goto T, Murasugi A, Wada-Nakagawa C, Hayashi Y (1984) Cadystin a and b, major unit peptides comprising cadmium binding peptides induced in a fission yeast—separation, revision of structures and synthesis. Tetrahedron Lett 25:3869–3872CrossRefGoogle Scholar
  65. Kramer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol 115:1641–1650PubMedCentralPubMedGoogle Scholar
  66. Kubota H, Sato K, Yamada T, Maitani T (2000) Phytochelatin homologs induced in hairy roots of horseradish. Phytochemistry 53:239–245PubMedCrossRefGoogle Scholar
  67. Lee S, Moon JS, Ko T-S, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663PubMedCentralPubMedCrossRefGoogle Scholar
  68. Lei Y, Chen K, Tian X, Korpelainen H, Li C (2007) Effect of Mn toxicity on morphological and physiological changes in two Populus cathayana populations originating from different habitats. Trees 21:569–580CrossRefGoogle Scholar
  69. Leopold I, Gunther D, Schmidt J, Neumann D (1999) Phytochelatins and heavy metal tolerance. Phytochemistry 50:1323–1328CrossRefGoogle Scholar
  70. Lewis S, Donkin M, Depledge M (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat Toxicol 51:277–291PubMedCrossRefGoogle Scholar
  71. Li Y, Dankher OP, Carreira L, Smith AP, Meagher RB (2006) The shoot-specific expression of γ-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288–298PubMedCentralPubMedCrossRefGoogle Scholar
  72. Liang G, Liao X, Du G, Chen J (2009) A new strategy to enhance glutathione production by multiple H2O2-induced oxidative stresses in Candida utilis. Bioresour Technol 100:350–355PubMedCrossRefGoogle Scholar
  73. Lindberg S, Landberg T, Greger M (2007) Cadmium uptake and interaction with phytochelatins in wheat protoplasts. Plant Physiol Biochem 45:47–53PubMedCrossRefGoogle Scholar
  74. Liu WT, Zhou QX, An J, Sun YB, Liu R (2010a) Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J Hazard Mater 173:737–743PubMedCrossRefGoogle Scholar
  75. Liu WT, Zhou QX, Zhang YL, Wei SH (2010b) Lead accumulation in different Chinese cabbage cultivars and screening for pollution-safe cultivars. J Environ Manage 91:781–788PubMedCrossRefGoogle Scholar
  76. Liu GY, Zhang YX, Chai TY (2011a) Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco. Plant Cell Rep 30:1067–1076PubMedCrossRefGoogle Scholar
  77. Liu WT, Zhou QX, Zhang ZN, Hua T, Cai Z (2011b) Evaluation of cadmium phytoremediation potential in Chinese cabbage cultivars. J Agric Food Chem 59:8324–8330PubMedCrossRefGoogle Scholar
  78. Liu WT, Ni JC, Zhou QX (2013) Uptake of heavy metals by trees: prospects for phytoremediation. Mater Sci Forum 743–744:768–781CrossRefGoogle Scholar
  79. Liu W, Liang L, Zhang X, Zhou Q (2015) Cultivar variations in cadmium and lead accumulation and distribution among 30 wheat (Triticum aestivum L.) cultivars. Environ Sci Pollut Res 22:8432–8441CrossRefGoogle Scholar
  80. Lombardi L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci 168:797–802CrossRefGoogle Scholar
  81. Loscos J, Naya L, Ramos J, Clemente MR, Matamoros MA, Becana M (2006) A reassessment of substrate specificity and activation of phytochelatin synthases from model plants by physiologically relevant metals. Plant Physiol 140:1213–1221PubMedCentralPubMedCrossRefGoogle Scholar
  82. Machado-Estrada B, Calderón J, Moreno-Sánchez R, Rodríguez-Zavala J (2013) Accumulation of arsenic, lead, copper, and zinc, synthesis of phytochelatins by indigenous plants of a mining impacted area. Environ Sci Pollut Res 20:3946–3955CrossRefGoogle Scholar
  83. Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol (Rockville) 110:1145–1150Google Scholar
  84. Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals. Springer, DordrechtGoogle Scholar
  85. Meuwly P, Thibault P, Rauser WE (1993) γ-Glutamylcysteinylglutamic acid—a new homologue of glutathione in maize seedlings exposed to cadmium. FEBS Lett 336:472–476PubMedCrossRefGoogle Scholar
  86. Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37PubMedCrossRefGoogle Scholar
  87. Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5PubMedCrossRefGoogle Scholar
  88. Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22:368–374PubMedCrossRefGoogle Scholar
  89. Morelli E, Scarano G (2001) Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum tricornutum. Mar Environ Res 52:383–395PubMedCrossRefGoogle Scholar
  90. Murasugi A, Chiaki W, Hayashi Y (1981) Cadmium-binding peptide induced in fission yeast, Schizosaccharomyces pombe. J Biochem 90:1561–1565PubMedGoogle Scholar
  91. Nelson N (1999) Metal ion transporters and homeostasis. EMBO J 18:4361–4371PubMedCentralPubMedCrossRefGoogle Scholar
  92. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279CrossRefGoogle Scholar
  93. Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491–3499PubMedCentralPubMedGoogle Scholar
  94. Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728PubMedCrossRefGoogle Scholar
  95. Osaki Y, Shirabe T, Tamura S, Yoshimura E (2008) A functional putative phytochelatin synthase from the primitive red alga Cyanidioschyzon merolae. Biosci Biotechnol Biochem 72:3306–3309PubMedCrossRefGoogle Scholar
  96. Oven M, Page JE, Zenk MH, Kutchan TM (2002) Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max—relation to phytochelatin synthase. J Biol Chem 277:4747–4754PubMedCrossRefGoogle Scholar
  97. Pal R, Rai J (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160:945–963PubMedCrossRefGoogle Scholar
  98. Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340PubMedCentralPubMedCrossRefGoogle Scholar
  99. Pawlik-Skowronska B (2001) Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water; effects of some environmental factors. Aquat Toxicol 52:241–249PubMedCrossRefGoogle Scholar
  100. Pawlik-Skowrońska B, Sanità di Toppi L, Favali MA, Fossati F, Pirszel J, Skowroński T (2002) Lichens respond to heavy metals by phytochelatin synthesis. New Phytol 156:95–102Google Scholar
  101. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136PubMedGoogle Scholar
  102. Prasad MNV, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321CrossRefGoogle Scholar
  103. Ramos J, Clemente MR, Naya L, Loscos J, Perez-Rontome C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume Lotus japonicus: a small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol 143:1110–1118PubMedCentralPubMedCrossRefGoogle Scholar
  104. Ranieri A, Castagna A, Scebba F, Careri M, Zagnoni I, Predieri G, Pagliari M, di Toppi LS (2005) Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiol Biochem 43:45–54PubMedCrossRefGoogle Scholar
  105. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181PubMedCrossRefGoogle Scholar
  106. Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61–86PubMedCrossRefGoogle Scholar
  107. Rauser WE (1995) Phytochelatins and related peptides; Structure, biosynthesis, and function. Plant Physiol 109:1141–1149PubMedCentralPubMedCrossRefGoogle Scholar
  108. Rauser WE (1999) Structure and function of metal chelators produced by plants—the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48PubMedCrossRefGoogle Scholar
  109. Rauser WE (2003) Phytochelatin-based complexes bind various amounts of cadmium in maize seedlings depending on the time of exposure, the concentration of cadmium and the tissue. New Phytol 158:269–278CrossRefGoogle Scholar
  110. Rea PA (2012) Phytochelatin synthase: of a protease a peptide polymerase made. Physiol Plant 145:154–164PubMedCrossRefGoogle Scholar
  111. Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104PubMedCrossRefGoogle Scholar
  112. Rellan-Alvarez R, Ortega-Villasante C, Alvarez-Fernandez A, del Campo FF, Hernandez LE (2006) Stress responses of Zea mays to cadmium and mercury. Plant Soil 279:41–50CrossRefGoogle Scholar
  113. Requejo R, Tena M (2005) Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry 66:1519–1528PubMedCrossRefGoogle Scholar
  114. Sadi BBM, Vonderheide AP, Gong JM, Schroeder JI, Shann JR, Caruso JA (2008) An HPLC-ICP-MS technique for determination of cadmium-phytochelatins in genetically modified Arabidopsis thaliana. J Chromatogr B 861:123–129CrossRefGoogle Scholar
  115. Schäfer HJ, Haag-Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform. Plant Mol Biol 37:87–97PubMedCrossRefGoogle Scholar
  116. Schat H, Kalff MM (1992) Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol 99:1475–1480PubMedCentralPubMedCrossRefGoogle Scholar
  117. Schulz H, Haertling S, Tanneberg H (2008) The identification and quantification of arsenic-induced phytochelatins-comparison between plants with varying As sensitivities. Plant Soil 303:275–287CrossRefGoogle Scholar
  118. Shahbaz M, Stuiver CEE, Posthumus FS, Parmar S, Hawkesford MJ, De Kok LJ (2014) Copper toxicity in Chinese cabbage is not influenced by plant sulphur status, but affects sulphur metabolism-related gene expression and the suggested regulatory metabolites. Plant Biol 16:68–78CrossRefPubMedGoogle Scholar
  119. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52CrossRefGoogle Scholar
  120. Shimwell D, Laurie A (1972) Lead and zinc contamination of vegetation in the Southern Pennines. Environ Pollut 3:291–301CrossRefGoogle Scholar
  121. Shiyab S, Chen J, Han FXX, Monts DL, Matta FB, Gu MM, Su Y, Masad MA (2009) Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.). Environ Toxicol 24:462–471PubMedCrossRefGoogle Scholar
  122. Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110PubMedCrossRefGoogle Scholar
  123. Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784. doi: 10.1038/srep05784
  124. Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270PubMedCrossRefGoogle Scholar
  125. Sreekanth TVM, Nagajyothi PC, Lee KD, Prasad TNVKV (2013) Occurrence, physiological responses and toxicity of nickel in plants. Int J Environ Sci Technol 10:1129–1140CrossRefGoogle Scholar
  126. Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Gupta DK (2006) Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquat Toxicol 80:405–415PubMedCrossRefGoogle Scholar
  127. Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 41:2930–2936PubMedCrossRefGoogle Scholar
  128. Steffens J (1990) The heavy metal-binding peptides of plants. Annu Rev Plant Biol 41:553–575CrossRefGoogle Scholar
  129. Stolt JP, Sneller FEC, Bryngelsson T, Lundborg T, Schat H (2003) Phytochelatin and cadmium accumulation in wheat. Environ Exp Bot 49:21–28CrossRefGoogle Scholar
  130. Sun Y, Zhou Q, Liu WT, An J, Xu ZQ, Wang L (2009) Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: a potential Cd-hyperaccumulator and As-excluder Bidens pilosa L. J Hazard Mater 165:1023–1028PubMedCrossRefGoogle Scholar
  131. Sylwia W, Anna R, Ewa B, Stephan C, Danuta Maria A (2010) The role of subcellular distribution of cadmium and phytochelatins in the generation of distinct phenotypes of AtPCS1- and CePCS3-expressing tobacco. J Plant Physiol 167:981–988CrossRefGoogle Scholar
  132. Tennstedt P, Peisker D, Bottcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149:938–948PubMedCentralPubMedCrossRefGoogle Scholar
  133. Thomas JC, Malick FK, Endreszl C, Davies EC, Murray KS (1998) Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum. Physiol Plant 102:360–368CrossRefGoogle Scholar
  134. Thumann J, Grill E, Winnacker EL, Zenk MH (1991) Reactivation of metal-requiring apoenzymes by phytochelatin—metal complexes. FEBS Lett 284:66–69PubMedCrossRefGoogle Scholar
  135. Tian S, Lu L, Labavitch J, Yang X, He Z, Hu H, Sarangi R, Newville M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157:1914–1925PubMedCentralPubMedCrossRefGoogle Scholar
  136. Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165PubMedCrossRefGoogle Scholar
  137. Tyler G (1989) Uptake, retention and toxicity of heavy metals in lichens. Water Air Soil Pollut 47:321–333CrossRefGoogle Scholar
  138. Van Balen E, Van de Geijn S, Desmet G (1980) Autoradiographic evidence for the incorporation of cadmium into calcium oxalate crystals. Z Pflanzenphysiol 97:123–133CrossRefGoogle Scholar
  139. Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110–7115PubMedCentralPubMedCrossRefGoogle Scholar
  140. Wei S, Zhou Q, Wang X (2005) Identification of weed plants excluding the uptake of heavy metals. Environ Int 31:829–834PubMedCrossRefGoogle Scholar
  141. Wei S, Teixeira da Silva JA, Zhou Q (2008a) Agro-improving method of phytoextracting heavy metal contaminated soil. J Hazard Mater 150:662–668PubMedCrossRefGoogle Scholar
  142. Wei SH, Zhou QX, Saha UK (2008b) Hyperaccumulative characteristics of weed species to heavy metals. Water Air Soil Pollut 192:173–181CrossRefGoogle Scholar
  143. Wei SH, Zhu JG, Zhou QX, Zhan J (2011) Fertilizer amendment for improving the phytoextraction of cadmium by a hyperaccumulator Rorippa globosa (Turcz.) Thell. J Soils Sediments 11:915–922CrossRefGoogle Scholar
  144. Wierzbicka M (1986) The effect of lead on the ultrastructure changes in the root-tip of Onion-Allium cepa L. Folia Histochem Cytobiol 24:340–341, Vesaluis Medical Publishing, Wislisko, Krakow, PolandGoogle Scholar
  145. Wójcik M, Tukiendorf A (2004) Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. Plant Growth Regul 44:71–80CrossRefGoogle Scholar
  146. Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell Online 10:1539–1550CrossRefGoogle Scholar
  147. Xiang CB, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574PubMedCentralPubMedCrossRefGoogle Scholar
  148. Xu J, Yang L, Wang Z, Dong G, Huang J, Wang Y (2006) Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil. Chemosphere 62:602–607PubMedCrossRefGoogle Scholar
  149. Xu J, Bravo AG, Lagerkvist A, Bertilsson S, Sjöblom R, Kumpiene J (2015) Sources and remediation techniques for mercury contaminated soil. Environ Int 74:42–53PubMedCrossRefGoogle Scholar
  150. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179CrossRefGoogle Scholar
  151. Yang X, Baligar V, Martens D, Clark R (1996) Plant tolerance to nickel toxicity: II Nickel effects on influx and transport of mineral nutrients in four plant species. J Plant Nutr 19:265–279CrossRefGoogle Scholar
  152. Yang YY, Jung JY, Song WY, Suh HS, Lee Y (2000) Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol 124:1019–1026PubMedCentralPubMedCrossRefGoogle Scholar
  153. Yang Q, Zeng Q, Xiao F, Liu X, Pan J, He J, Li Z (2013) Investigation of manganese tolerance and accumulation of two Mn hyperaccumulators Phytolacca americana L. and Polygonum hydropiper L. in the real Mn-contaminated soils near a manganese mine. Environ Earth Sci 68:1127–1134CrossRefGoogle Scholar
  154. Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179:21–30PubMedCrossRefGoogle Scholar
  155. Zhang Z, Gao X, Qiu B (2008) Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead. Phytochemistry 69:911–918PubMedCrossRefGoogle Scholar
  156. Zhang ZC, Chen BX, Qiu BS (2010) Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants. Plant Cell Environ 33:1248–1255PubMedCrossRefGoogle Scholar
  157. Zhang X, Uroic MK, Xie WY, Zhu YG, Chen BD, McGrath SP, Feldmann J, Zhao FJ (2012) Phytochelatins play a key role in arsenic accumulation and tolerance in the aquatic macrophyte Wolffia globosa. Environ Pollut 165:18–24PubMedCrossRefGoogle Scholar
  158. Zhou Q, Song Y (2004) Principles and methods of contaminated soil remediation. Science, Beijing (in Chinese)Google Scholar
  159. Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999a) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169–1178PubMedCentralPubMedCrossRefGoogle Scholar
  160. Zhu YL, Pilon-Smits EA, Jouanin L, Terry N (1999b) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Weitao Liu
    • 1
  • Xue Zhang
    • 1
  • Lichen Liang
    • 1
  • Chen Chen
    • 1
  • Shuhe Wei
    • 2
    Email author
  • Qixing Zhou
    • 1
  1. 1.Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and EngineeringNankai UniversityTianjinChina
  2. 2.Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied EcologyChinese Academy of SciencesShenheChina

Personalised recommendations