Advertisement

Redox Regulation and Antioxidant Defence During Abiotic Stress: What Have We Learned from Arabidopsis and Its Relatives?

  • Baris Uzilday
  • Rengin Ozgur
  • A. Hediye Sekmen
  • Ismail TurkanEmail author

Abstract

Abiotic stress conditions are a global constraint that affects plant growth and crop yield worldwide, and this phenomenon is expected to be increased in the forthcoming future due to global climate change. Arabidopsis thaliana is the model organism for plant science since the early 1990s, and its genome has been known for more than a decade. Studies conducted with Arabidopsis created a foundation that could be transferred and used in its close relatives to similarity of genetic sequences. Up to now, studies on A. thaliana gave deep insight into different abiotic stress tolerance mechanisms. However, A. thaliana is not a stress-tolerant plant species. Therefore some of the stress tolerance mechanisms that are used by its stress-tolerant relatives might not even be observed in Arabidopsis. This chapter focused on reactive oxygen species (ROS) production during environmental stress and antioxidant defence systems activated against it in A. thaliana and its close relatives such as Thellungiella sp., A. halleri, Thlaspi sp., Lepidium sativum and Arabis paniculata.

Keywords

Arabidopsis-related model species (ARMS) Arabidopsis Antioxidant defence Drought stress Heavy metal stress Redox regulation Salinity Oxidative stress 

References

  1. Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agron Soil Sci 56:575–588CrossRefGoogle Scholar
  2. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341PubMedCrossRefGoogle Scholar
  3. Alvarez S, Galant A, Jez JM, Hicks LM (2011) Redox‐regulatory mechanisms induced by oxidative stress in Brassica juncea roots monitored by 2‐DE proteomics. Proteomics 11:1346–1350PubMedCrossRefGoogle Scholar
  4. Amor NB, Hamed KB, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmummaritimum to salinity. Plant Sci 168(4):889–899CrossRefGoogle Scholar
  5. Amtmann A, Bohnert HJ, Bressan RA (2005) Abiotic stress and plant genome evolution. Search for new models. Plant Physiol 138:127–130PubMedCentralPubMedCrossRefGoogle Scholar
  6. Asada K, Takahashi M (1987) Production and scavenging of active oxygen in chloroplasts. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, AmsterdamGoogle Scholar
  7. Assunção AG, Bookum WM, Nelissen HJ, Vooijs R, Schat H, Ernst WH (2003) Differential metalspecific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159(2):411–419CrossRefGoogle Scholar
  8. Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004a) Over‐expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121:231–238PubMedCrossRefGoogle Scholar
  9. Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004b) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928CrossRefGoogle Scholar
  10. Baier M, Noctor G, Foyer CH, Dietz KJ (2000) Antisense suppression of 2-cysteine peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. Plant Physiol 124:823–832PubMedCentralPubMedCrossRefGoogle Scholar
  11. Baisakh N, Subudhi PK, Varadwaj P (2008) Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct Integr Genom 8:287–300CrossRefGoogle Scholar
  12. Bannister WH, Bannister JV, Barra D, Bond J, Bossa F (1991) Evolutionary aspects of superoxide dismutase: the copper/zinc enzyme. Free Radic Res 12:349–361CrossRefGoogle Scholar
  13. Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240PubMedCrossRefGoogle Scholar
  14. Benina M, Obata T, Mehterov N, Ivanov I, Petrov V, Toneva V, Ferniw AR, Gechev TS (2013) Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature. Front Plant Sci 4:499PubMedCentralPubMedCrossRefGoogle Scholar
  15. Bhattachrjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plant. Curr Sci 89:1113–1121Google Scholar
  16. Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158–167PubMedCrossRefGoogle Scholar
  17. Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257PubMedCrossRefGoogle Scholar
  18. Bréhélin C, Meyer EH, de Souris JP, Bonnard G, Meyer Y (2003) Resemblance and dissemblance of Arabidopsis type II peroxiredoxins: similar sequences for divergent gene expression, protein localization, and activity. Plant Physiol 132:2045–2057PubMedCentralPubMedCrossRefGoogle Scholar
  19. Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122PubMedCrossRefGoogle Scholar
  20. Bueso E, Alejandro S, Carbonell P, Perez‐Amador MA, Fayos J, Bellés JM, Serrano R (2007) The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross‐talk between oxidative stress and ethylene. Plant J 52:1052–1065PubMedCrossRefGoogle Scholar
  21. Cechin I, Rossi SC, Oliveira VC, Fumis TF (2006) Photosynthetic responses and proline content of mature and young leaves of sunflower plants under water deficit. Photosynthetica 44:143–146CrossRefGoogle Scholar
  22. Chen J, Cheng T, Wang P, Liu W, Xiao J, Hu X, Jiang Z, Zhang S, Shi J (2012) Salinity-induced changes in protein expression in the halophytic plant Nitraria sphaerocarpa. J Proteomics 75:5226–5243PubMedCrossRefGoogle Scholar
  23. Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877PubMedCrossRefGoogle Scholar
  24. Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40:6792–6798PubMedCrossRefGoogle Scholar
  25. Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120CrossRefGoogle Scholar
  26. Claussen W (2005) Proline as a measure of stress in tomato plants. Plant Sci 168:241–248CrossRefGoogle Scholar
  27. Corpas FJ, Barroso JB, del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150PubMedCrossRefGoogle Scholar
  28. Craciun AR, Courbot M, Bourgis F, Salis P, Saumitou-Laprade P, Verbruggen N (2006) Comparative cDNA-AFLP analysis of Cd-tolerant and-sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp. petraea. J Exp Bot 57:2967–2983PubMedCrossRefGoogle Scholar
  29. Cuypers A, Karen S, Jos R, Kelly O, Els K, Tony R, Nele H, Nathalie V, Suzy VS, Frank VB, Yves G, Jan C, Jaco V (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316PubMedCrossRefGoogle Scholar
  30. Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell Online 17:268–281CrossRefGoogle Scholar
  31. De Leonardis S, Dipierro N, Dipierro S (2000) Purification and characterization of an ascorbate peroxidase from potato tuber mitochondria. Plant Physiol Biochem 38:773–779CrossRefGoogle Scholar
  32. del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272PubMedCrossRefGoogle Scholar
  33. Devi SR, Prasad MNV (2005) Antioxidant capacity of Brassica juncea plants exposed to elevated levels of copper. Russ J Plant Physiol 52:205–208CrossRefGoogle Scholar
  34. Dietz KJ, Horling F, König J, Baier M (2002) The function of the chloroplast 2‐cysteine peroxiredoxin in peroxide detoxification and its regulation. J Exp Bot 53:1321–1329PubMedCrossRefGoogle Scholar
  35. Dietz KJ, Pfannschmidt T (2011) Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol 155:1477–1485PubMedCentralPubMedCrossRefGoogle Scholar
  36. Drążkiewicz M, Skórzyńska-Polit E, Krupa Z (2003) Response of the ascorbate–glutathione cycle to excess copper in Arabidopsis thaliana (L.). Plant Sci 164:195–202CrossRefGoogle Scholar
  37. Ellouzi H, Ben Hamed K, Cela J, Munné‐Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Planta 142:128–143Google Scholar
  38. Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264PubMedCrossRefGoogle Scholar
  39. Fariduddin Q, Khanam S, Hasan SA, Ali B, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol Plant 31:889–897CrossRefGoogle Scholar
  40. Farinati S, DalCorso G, Bona E, Corbella M, Lampis S, Cecconi D, Furini A (2009) Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics 9:4837–4850PubMedCrossRefGoogle Scholar
  41. Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz KJ (2005) The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. J Biol Chem 280:12168–12180PubMedCrossRefGoogle Scholar
  42. Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446PubMedCrossRefGoogle Scholar
  43. Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364CrossRefGoogle Scholar
  44. Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell Online 16:2176–2191CrossRefGoogle Scholar
  45. Freeman JL, Salt DE (2007) The metal tolerance profile of Thlaspi goesingense is mimicked in Arabidopsis thaliana heterologously expressing serine acetyl-transferase. BMC Plant Biol 7:63PubMedCentralPubMedCrossRefGoogle Scholar
  46. Gao F, Zhou Y, Zhu W, Li X, Fan L, Zhang G (2009) Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves. Planta 230:1033–1046PubMedCrossRefGoogle Scholar
  47. Ghars MA, Parre E, Debez A, Bordenave M, Richard L, Leport C, Bouchereau A, Savoure A, Abdelly C (2008) Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. J Plant Physiol 165:588–599PubMedCrossRefGoogle Scholar
  48. Ghars MA, Richard L, Lefebvre-DeVos D, Leprince AS, Parre E, Bordenave M, Abdelly C, Savoure A (2012) Phospholipases C and D modulate proline accumulation in Thellungiella halophila/salsuginea differently according to the severity of salt or hyperosmotic stress. Plant Cell Physiol 53:183–192PubMedCrossRefGoogle Scholar
  49. Gill F, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefGoogle Scholar
  50. Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120PubMedCrossRefGoogle Scholar
  51. Griffith M, Timonin M, Wong AC, Gray GR, Akhter SR, Saldanha M, Rogers MA, Weretilnyk EA, Moffatt B (2007) Thellungiella: an Arabidopsis‐related model plant adapted to cold temperatures. Plant Cell Environ 30:529–538PubMedCrossRefGoogle Scholar
  52. Hofmann B, Hecht HJ, Flohé L (2002) Peroxiredoxins. Biol Chem 383:347–364PubMedGoogle Scholar
  53. Hu YQ, Liu S, Yuan HM, Li J, Yan DW, Zhang JF, Lu YT (2010) Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter‐and 3′‐untranslated region exchange experiments in the Arabidopsis cat2 photorespiratory mutant. Plant Cell Environ 33:1656–1670PubMedCrossRefGoogle Scholar
  54. Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot 56:3041–3049PubMedCrossRefGoogle Scholar
  55. Jbir N, Chaïbi W, Ammar S, Jemmali A, Ayadi A (2001) Root growth and lignification of two wheat species differing in their sensitivity to NaCl, in response to salt stress. Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie 324(9):863–868CrossRefGoogle Scholar
  56. Jung S (2004) Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Sci 166:459–466CrossRefGoogle Scholar
  57. Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29:1220–1234PubMedCrossRefGoogle Scholar
  58. Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657PubMedCrossRefGoogle Scholar
  59. Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837PubMedGoogle Scholar
  60. Kim KH, Alam I, Lee KW, Sharmim SA, Kwak SS, Lee SY, Lee BH (2010) Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses. Biotechnol Lett 32:571–576PubMedCrossRefGoogle Scholar
  61. Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650PubMedCentralPubMedCrossRefGoogle Scholar
  62. Koffler BE, Luschin-Ebengreuth N, Stabentheiner E, Müller M, Zechmann B (2014) Compartment specific response of antioxidants to drought stress in Arabidopsis. Plant Sci 227:133–144PubMedCentralPubMedCrossRefGoogle Scholar
  63. König J, Baier M, Horling F, Kahmann U, Harris G, Schürmann P, Dietz KJ (2002) The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc Natl Acad Sci USA 99:5738–5743PubMedCentralPubMedCrossRefGoogle Scholar
  64. Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–921PubMedCrossRefGoogle Scholar
  65. Kranner I, Birtić S, Anderson KM, Pritchard HW (2006) Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Radic Biol Med 40:2155–2165PubMedCrossRefGoogle Scholar
  66. Lai AG, Doherty CJ, Mueller-Roeber B, Kay SA, Schippers JH, Dijkwel PP (2012) CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc Natl Acad Sci USA 109:17129–17134PubMedCentralPubMedCrossRefGoogle Scholar
  67. Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323–328PubMedCrossRefGoogle Scholar
  68. Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695PubMedCentralPubMedCrossRefGoogle Scholar
  69. Lee YP, Babakov A, de Boer B, Zuther E, Hincha DK (2012) Comparison of freezing tolerance, compatible solutes and polyamines in geographically diverse collections of Thellungiella sp. and Arabidopsis thaliana accessions. BMC Plant Biol 12:131PubMedCentralPubMedCrossRefGoogle Scholar
  70. Li Y, Zhou Y, Wang Z, Sun X, Tang K (2010) Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism. Plant Sci 178:312–320CrossRefGoogle Scholar
  71. Lim S, Kim YH, Kim SH, Kwon SY, Lee HS, Kim JS, Cho KY, Paek KY, Kwak SS (2007) Enhanced tolerance of transgenic sweet potato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Mol Breed 19:227–239CrossRefGoogle Scholar
  72. Liszkay K, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564CrossRefGoogle Scholar
  73. Loew O (1900) A new enzyme of general occurrence in organisms. Science 11:701–702PubMedCrossRefGoogle Scholar
  74. Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917PubMedCrossRefGoogle Scholar
  75. Lv WT, Lin B, Zhang M, Hua XJ (2011) Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiol 156:1921–1933PubMedCentralPubMedCrossRefGoogle Scholar
  76. M’rah S, Ouerghi Z, Berthomieu C, Havaux M, Jungas C, Hajii M, Grignon C, Lachaal M (2006) Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. J Plant Physiol 163:1022–1031PubMedCrossRefGoogle Scholar
  77. M’rah S, Ouerghi Z, Eymery F, Rey P, Hajii M, Grignon C, Lachaal M (2007) Efficiency of biochemical protection against toxic effects of accumulated salt differentiates Thellungiella halophila from Arabidopsis thaliana. J Plant Physiol 164:375–384PubMedCrossRefGoogle Scholar
  78. Maksymiec W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57:187–194CrossRefGoogle Scholar
  79. Margis R, Dunand C, Teixeira FK, Margis‐Pinheiro M (2008) Glutathione peroxidase family–an evolutionary overview. FEBS J 275:3959–3970PubMedCrossRefGoogle Scholar
  80. Markovska YK, Gorinova NI, Nedkovska MP, Miteva KM (2009) Cadmium-induced oxidative damage and antioxidant responses in Brassica juncea plants. Biol Plant 53:151–154CrossRefGoogle Scholar
  81. Masters CJ (2001) Cellular signalling: the role of the peroxisome. Cell Signal 8:197–208CrossRefGoogle Scholar
  82. McClung CR (1997) Regulation of catalases in Arabidopsis. Free Radic Biol Med 23:489–496PubMedCrossRefGoogle Scholar
  83. Miao Y, Lu D, Wang P, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell Online 18:2749–2766CrossRefGoogle Scholar
  84. Milla MAR, Maurer A, Huete AR, Gustafson JP (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J 36:602–615CrossRefGoogle Scholar
  85. Millar AH, Whelan J, Soole KL, Day DA (2011) Organization and regulation of mitochondrial respiration in plants. Annu Rev Plant Biol 62:79–104PubMedCrossRefGoogle Scholar
  86. Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol 144:1777–1785PubMedCentralPubMedCrossRefGoogle Scholar
  87. Miret JA, Munné‐Bosch S (2015) Redox signaling and stress tolerance in plants: a focus on vitamin E. Ann New York Acad Sci. doi: 10.1111/nyas.12639 Google Scholar
  88. Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26PubMedCrossRefGoogle Scholar
  89. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410PubMedCrossRefGoogle Scholar
  90. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefGoogle Scholar
  91. Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610PubMedCrossRefGoogle Scholar
  92. Mohamed AA, Castagna A, Ranieri A, di Toppi LS (2012) Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol Biochem 57:15–22PubMedCrossRefGoogle Scholar
  93. Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Mol Biol 52:561–591CrossRefGoogle Scholar
  94. Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stressresponsive gene expression. Photosynth Res 86(3):459–474PubMedCrossRefGoogle Scholar
  95. Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57CrossRefGoogle Scholar
  96. Munne-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748PubMedCrossRefGoogle Scholar
  97. Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat‐induced photooxidative stress and to nitric oxide‐induced cell death. Plant J 38:940–953PubMedCrossRefGoogle Scholar
  98. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279PubMedCrossRefGoogle Scholar
  99. Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648PubMedCentralPubMedCrossRefGoogle Scholar
  100. Nouairi I, Ammar WB, Youssef NB, Miled DDB, Ghorbal MH, Zarrouk M (2009) Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiol Plant 31:237–247CrossRefGoogle Scholar
  101. Olmos E, Hernandez JA, Sevilla F, Hellin E (1994) Induction of several antioxidant enzymes in the selection of a salt-tolerant cell line of Pisum sativum. J Plant Physiol 144:594–598CrossRefGoogle Scholar
  102. Orsini F, D’Urzo MP, Inan G, Serra S, Oh DH, Mickelbart MV, Consiglio F, Li X, Jeong JC, Yun DJ, Bohnert HJ, Bressan RA, Maggio A (2010) A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana. J Exp Bot 61:3787–3798PubMedCentralPubMedCrossRefGoogle Scholar
  103. Ozfidan C, Turkan I, Sekmen AH, Seckin B (2012) Abscisic acid‐regulated responses of aba2‐1 under osmotic stress: the abscisic acid‐inducible antioxidant defence system and reactive oxygen species production. Plant Biol 14:337–346PubMedCrossRefGoogle Scholar
  104. Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599PubMedCrossRefGoogle Scholar
  105. Passaia G, Queval G, Bai J, Margis-Pinheiro M, Foyer CH (2014) The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana. J Exp Bot 65:1403–1413PubMedCentralPubMedCrossRefGoogle Scholar
  106. Peer WA, Mamoudian M, Lahner B, Reeves RD, Murphy AS, Salt DE (2003) Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytol 159:421–430CrossRefGoogle Scholar
  107. Peng CL, Ou ZY, Liu N, Lin GZ (2005) Response to high temperature in flag leaves of super high-yielding rice Pei’ai 64S/E32 and Liangyoupeijiu. Rice Sci 12:179–186Google Scholar
  108. Perez-Ruiz JM, Spinola MC, Kirchsteiger K, Moreno J, Sahraway M, Cejudo FJ (2006) Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. Plant Cell 18:2356–2368PubMedCentralPubMedCrossRefGoogle Scholar
  109. Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Signal 8:1757–1764PubMedCrossRefGoogle Scholar
  110. Prasad KVSK, Saradhi PP, Sharmila P (1999) Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot 42:1–10CrossRefGoogle Scholar
  111. Qiu RL, Zhao X, Tang YT, Yu FM, Hu PJ (2008) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator Arabis paniculata F. Chemosphere 74:6–12PubMedCrossRefGoogle Scholar
  112. Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18PubMedCrossRefGoogle Scholar
  113. Queval G, Issakidis‐Bourguet E, Hoeberichts FA, Vandorpe M, Gakière B, Vanacker H, Noctor G (2007) Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength‐dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2‐induced cell death. Plant J 52:640–657PubMedCrossRefGoogle Scholar
  114. Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidès C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci USA 109:5535–5540PubMedCentralPubMedCrossRefGoogle Scholar
  115. Regelsberger G, Jakopitsch C, Plasser L, Schwaiger H, Furtmüller PG, Peschek GA, Obinger C (2002) Occurrence and biochemistry of hydroperoxidases in oxygenic phototrophic prokaryotes (cyanobacteria). Plant Physiol Biochem 40:479–490CrossRefGoogle Scholar
  116. Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366PubMedCentralPubMedCrossRefGoogle Scholar
  117. Rojas C, Mysore KS (2012) Glycolate oxidase is an alternative source for H2O2 production during plant defense responses and functions independently from NADPH oxidase. Plant Signal Behav 7:752–755PubMedCentralPubMedCrossRefGoogle Scholar
  118. Rojas CM, Senthil-Kumar M, Wang K, Ryu CM, Kaundal A, Mysore KS (2012) Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance in Nicotiana benthamiana and Arabidopsis. Plant Cell 24:336–352PubMedCentralPubMedCrossRefGoogle Scholar
  119. Rouhier N, Jacquot JP (2002) Plant peroxiredoxins: alternative hydroperoxide scavenging enzymes. Photosynth Res 74:259–268PubMedCrossRefGoogle Scholar
  120. Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12PubMedCentralPubMedGoogle Scholar
  121. Seth CS, Chaturvedi PK, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf 71:76–85PubMedCrossRefGoogle Scholar
  122. Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt‐tolerant relative Lycopersicon pennellii to salt‐dependent oxidative stress: the root antioxidative system. Physiol Plant 112:487–494Google Scholar
  123. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319PubMedCrossRefGoogle Scholar
  124. Skórzyńska-Polit E, Drążkiewicz M, Krupa Z (2010) Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. Acta Physiol Plant 32:169–175CrossRefGoogle Scholar
  125. Soshinkova TN, Radyukina NL, Korolkova DV, Nosov AV (2013) Proline and functioning of the antioxidant system in Thellungiella salsuginea plants and cultured cells subjected to oxidative stress. Russ J Plant Physiol 60:41–54CrossRefGoogle Scholar
  126. Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165PubMedCentralPubMedCrossRefGoogle Scholar
  127. Sweetlove LJ, Foyer CH (2004) Roles for reactive oxygen species and antioxidants in plant mitochondria. In: Day DA, Millar AH, Whelan J (eds) Plant mitochondria: from genome to function, advances in photosynthesis and respiration, vol 1. Kluwer Academic, DordrechtGoogle Scholar
  128. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97PubMedCrossRefGoogle Scholar
  129. Takahashi MA, Asada K (1983) Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch Biochem Biophys 226:558–566PubMedCrossRefGoogle Scholar
  130. Taulavuori K, Prasad MNV, Taulavuori E, Laine K (2005) Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis. Environ Pollut 135:209–220PubMedCrossRefGoogle Scholar
  131. Tuomainen MH, Nunan N, Lehesranta SJ, Tervahauta AI, Hassinen VH, Schat H, Kärenlampi SO (2006) Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions. Proteomics 6:3696–3706PubMedCrossRefGoogle Scholar
  132. Ursini F, Maiorin M, Roveri A (1997) Phospholipid hydroperoxide glutathione peroxidase (PHGPx): more than an antioxidant enzyme? Biomed Environ Sci 10:327–332PubMedGoogle Scholar
  133. Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184PubMedCrossRefGoogle Scholar
  134. Uzilday B, Ozgur R, Sekmen AH, Yildiztugay E, Turkan I (2015) Changes in the alternative electron sinks and antioxidant defence in chloroplasts of the extreme halophyte Eutrema parvulum (Thellungiella parvula) under salinity. Ann Bot 115:449–463PubMedCrossRefPubMedCentralGoogle Scholar
  135. Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57:201–212PubMedCrossRefGoogle Scholar
  136. Voothuluru P, Sharp RE (2013) Apoplastic hydrogen peroxide in the growth zone of the maize primary root under water stress. I. Increased levels are specific to the apical region of growth maintenance. J Exp Bot 64:1223–1233PubMedCrossRefGoogle Scholar
  137. Wagner D, Przybyla D, den Camp R, Kim C, Landgraf F, Lee KP, Wursch M, Laloi C, Nater M, Hideg E, Apel K (2004) The genetic basis of singlet oxygen induced stress responses of Arabidopsis thaliana. Science 306:1183–1185PubMedCrossRefGoogle Scholar
  138. Wang X, Chang L, Wang B, Wang D, Li P, Wang L, Guo A (2013) Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Mol Cell Proteomics 12:2174–2195PubMedCentralPubMedCrossRefGoogle Scholar
  139. Wang Y, Ying Y, Chen J, Wang X (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci 167:671–677CrossRefGoogle Scholar
  140. Wójcik M, Skórzyńska-Polit E, Tukiendorf A (2006) Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regul 48:145–155CrossRefGoogle Scholar
  141. Wrzaczek M, Brosché M, Kangasjarvi J (2013) ROS signaling loops - production, perception, regulation. Curr Opin Plant Biol 16:575–582PubMedCrossRefGoogle Scholar
  142. Xi DM, Liu WS, Yang GD, Wu CA, Zheng CC (2010) Seed‐specific overexpression of antioxidant genes in Arabidopsis enhances oxidative stress tolerance during germination and early seedling growth. Plant Biotechnol J 8:796–806PubMedCrossRefGoogle Scholar
  143. Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell Online 10:1539–1550CrossRefGoogle Scholar
  144. Yan J, Wang J, Tissue D, Holaday AS, Allen R, Zhang H (2003) Photosynthesis and seed production under water-deficit conditions in transgenic tobacco plants that overexpress an ascorbate peroxidase gene. Crop Sci 43:1477–1483CrossRefGoogle Scholar
  145. Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 99:4097–4102PubMedCentralPubMedCrossRefGoogle Scholar
  146. Yokota T, Oda HD (2001) The role of 15-lipoxygenase in disruption of the peroxisomal membrane and in programmed degradation of peroxisomes in normal rat liver. J Histochem Cytochem 49:613–622PubMedCrossRefGoogle Scholar
  147. Zander M, Chen S, Imkampe J, Thurow C, Gatz C (2012) Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif. Mol Plant 5:831–840PubMedCrossRefGoogle Scholar
  148. Zhou Y, Gao F, Li X, Zhang J, Zhang G (2010) Alterations in phosphoproteome under salt stress in Thellungiella roots. Chin Sci Bull 55:3673–3679CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Baris Uzilday
    • 1
  • Rengin Ozgur
    • 1
  • A. Hediye Sekmen
    • 1
  • Ismail Turkan
    • 1
    Email author
  1. 1.Department of Biology, Faculty of ScienceEge UniversityBornovaTurkey

Personalised recommendations