Advertisement

Modulation of the Ascorbate–Glutathione Cycle Antioxidant Capacity by Posttranslational Modifications Mediated by Nitric Oxide in Abiotic Stress Situations

  • J. C. Begara-Morales
  • B. Sánchez-Calvo
  • M. Chaki
  • R. Valderrama
  • C. Mata-Pérez
  • M. N. Padilla
  • F. J. Corpas
  • J. B. BarrosoEmail author

Abstract

Environmental stresses cause a rapid burst of second messengers belonging to reactive oxygen (ROS) and nitrogen (RNS) species, mainly hydrogen peroxide (H2O2) and nitric oxide (NO), respectively. H2O2 can act as a signal molecule or become toxic at high levels. Plants have developed different antioxidant tools, such as the ascorbate–glutathione (Asa–GSH) cycle, a key antioxidant system involved in the finely tuned regulation of H2O2 in cells, in order to control H2O2 overproduction. In recent years, a growing body of evidence points to the existence of a link between NO and physiological and stress responses in plants. NO activity is mainly conveyed through posttranslational modifications (PTMs) such as S-nitrosylation and/or tyrosine nitration. Over the last 10 years, the number of S-nitrosylated and nitrated proteins subjected to physiological and a stress condition has been observed to increase significantly in higher plants, suggesting that NO-PTMs are involved in plant physiology. Emerging evidence shows that ROS and NO interact during plant responses to (a)biotic stress, and proteins linked to ROS metabolism have been reported to be regulated by NO-related PTMs. Furthermore, using proteomic analytical techniques, enzymes involved in the Asa–GSH cycle have been identified as NO targets. However, little information exists on the specific impact of NO-PTMs on the structure and activity of these antioxidant enzymes. In this chapter, we will discuss recent findings concerning the regulation of the Asa–GSH cycle antioxidant capacity by NO-PTMs, particularly in relation to the role played by the NO target residues identified under stress conditions.

Keywords

Ascorbate–glutathione cycle Nitric oxide Tyrosine nitration S-nitrosylation Abiotic stress 

Notes

Acknowledgments

This study was supported by an ERDF grant co-financed by the Ministry of Economy and Competitiveness (projects BIO2012-33904 and RECUPERA2020) and the Junta de Andalucía (groups BIO286 and BIO192) in Spain. J. Begara-Morales would like to thank the Ministry of Science and Innovation for funding the Ph.D. fellowship (F.P.U.). LC/MS/MS analyses were carried out at the Laboratorio de Proteómica LP-CSIC/UAB, a member of ProteoRed network.

References

  1. Abello N, Kerstjens HAM, Postma DS, Bischoff R (2009) Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res 8:3222–3238PubMedCrossRefGoogle Scholar
  2. Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, del Río LA, Palma JM, Corpas FJ (2011a) Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ 35:281–295PubMedCrossRefGoogle Scholar
  3. Airaki M, Sánchez-Moreno L, Leterrier M, Barroso JB, Palma JM, Corpas FJ (2011b) Detection and quantification of S-nitrosoglutathione (GSNO) in pepper (Capsicum annuum L.) plant organs by LC-ES/MS. Plant Cell Physiol 52:2006–2015PubMedCrossRefGoogle Scholar
  4. Álvarez C, Lozano-Juste J, Romero LC, García I, Gotor C, León J (2011) Inhibition of Arabidopsis O-acetylserine (thiol) lyase A1 by tyrosine nitration. J Biol Chem 286:578–586PubMedCentralPubMedCrossRefGoogle Scholar
  5. Asada K (1992) Ascorbate peroxidase – a hydrogen peroxide-scavenging enzyme in plants. Physiol Planta 85:235–241CrossRefGoogle Scholar
  6. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396PubMedCentralPubMedCrossRefGoogle Scholar
  7. Astier J, Rasul S, Koen E, Manzoor H, Besson-Bard A, Lamotte O, Jeandroz S, Durner J, Lindermayr C, Wendehenne D (2011) S-nitrosylation: an emerging post-translational protein modification in plants. Plant Sci 181:527–533PubMedCrossRefGoogle Scholar
  8. Astier J, Lindermayr C (2012) Nitric oxide-dependent posttranslational modification in plants: an update. Int J Mol Sci 13:15193–15208PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bai X, Yang L, Tian M, Chen J, Shi J, Yang Y, Hu X (2011) Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation. PLoS One 6, e20714PubMedCentralPubMedCrossRefGoogle Scholar
  10. Becker K, Gui M, Schirmer RH (1995) Inhibition of human glutathione reductase by S-nitrosoglutathione. Eur J Biochem 234:472–478PubMedCrossRefGoogle Scholar
  11. Begara-Morales JC, Chaki M, Sanchez-Calvo B, Mata-Parez C, Leterrier M, Palma JM, Barroso JB, Corpas FJ (2013a) Protein tyrosine nitration in pea roots during development and senescence. J Exp Bot 64:1121–1134PubMedCentralPubMedCrossRefGoogle Scholar
  12. Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB (2013b) Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot 65:527–538PubMedCentralPubMedCrossRefGoogle Scholar
  13. Begara-Morales JC, Sanchez-Calvo B, Chaki M, Mata-Perez C, Valderrama R, Padilla MN, Lopez-Jaramillo J, Luque F, Corpas FJ, Barroso JB (2015) Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. J Exp Bot. doi: 10.1093/jxb/erv306 PubMedGoogle Scholar
  14. Belenghi B, Romero-Puertas MC, Vercammen D, Brackenier A, Inza D, Delledonne M, Van Breusegem F (2007) Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282:1352–1358PubMedCrossRefGoogle Scholar
  15. Bowdicht ML, Donaldson RP (1990) Ascorbate free-radical reduction by glyoxysomal membranes. Plant Physiol 94:531–537CrossRefGoogle Scholar
  16. Camejo D, Ortiz-Espín A, Lázaro JJ, Romero-Puertas MC, Lázaro-Payo A, Sevilla F, Jiménez A (2015) Functional and structural changes in plant mitochondrial PrxII F caused by NO. J Proteomics 119:112–125PubMedCrossRefGoogle Scholar
  17. Clark D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant Microbe Interact 13:1380–1384PubMedCrossRefGoogle Scholar
  18. Corpas FJ, Chaki M, Fernández-Ocaña A, Valderrama R, Palma JM, Carreras A, Begara-Morales JC, Airaki M, del Río LA, Barroso JB (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49:1711–1722PubMedCrossRefGoogle Scholar
  19. Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611PubMedCrossRefGoogle Scholar
  20. Corpas FJ, Leterrier M, Begara-Morales JC, Valderrama R, Chaki M, López-Jaramillo J, Luque F, Palma JM, Padilla MN, Sánchez-Calvo B (2013a) Inhibition of peroxisomal hydroxypyruvate reductase (HPR1) by tyrosine nitration. Biochim Biophys Acta 1830:4981–4989PubMedCrossRefGoogle Scholar
  21. Corpas FJ, Palma JM, Luis A, Barroso JB (2013b) Protein tyrosine nitration in higher plants grown under natural and stress conditions. Front Plant Sci 4:29PubMedCentralPubMedGoogle Scholar
  22. Corpas FJ, Begara-Morales JC, Sánchez-Calvo B, Chaki M, Barroso JB (2015) Nitration and S-nitrosylation: two post-translational modifications (PTMs) mediated by reactive nitrogen species (RNS) and their role in signalling processes of plant cells. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communication in plants. Springer, GermanyGoogle Scholar
  23. Correa-Aragunde N, Foresi N, Delledonne M, Lamattina L (2013) Auxin induces redox regulation of ascorbate peroxidase 1 activity by S-nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis. J Exp Bot 64:3339–3349PubMedCrossRefGoogle Scholar
  24. Creissen G, Edwards EA, Enard C, Wellburn A, Mullineaux P (1992) Molecular characterization of glutathione reductase cDNAs from pea (Pisum sativum L.). Plant J 2:129–131PubMedGoogle Scholar
  25. Chaki M, Fernández-Ocaña AM, Valderrama R, Carreras A, Esteban FJ, Luque F, Gómez-Rodíguez MV, Begara-Morales JC, Corpas FJ, Barroso JB (2009a) Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower-mildew interaction. Plant Cell Physiol 50:265–279PubMedCrossRefGoogle Scholar
  26. Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, López-Jaramillo J, Luque F, Palma JM, Pedrajas JR, Begara-Morales JC, Sánchez-Calvo B (2009b) Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. J Exp Bot 60:4221–4234PubMedCrossRefGoogle Scholar
  27. Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, Gómez-Rodríguez MV, López-Jaramillo J, Begara-Morales JC, Sánchez-Calvo B, Luque F, Leterrier M (2011a) High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitration. Plant Cell Environ 34:1803–1818PubMedCrossRefGoogle Scholar
  28. Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, Gómez-Rodíguez MV, Pedrajas JR, Begara-Morales JC, Sánchez-Calvo B, Luque F, Leterrier M (2011b) Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J Exp Bot 62:1803–1813PubMedCentralPubMedCrossRefGoogle Scholar
  29. Chaki M, Carreras A, López-Jaramillo J, Begara-Morales JC, Sánchez-Calvo B, Valderrama R, Corpas FJ, Barroso JB (2013) Tyrosine nitration provokes inhibition of sunflower carbonic anhydrase (β-CA) activity under high temperature stress. Nitric Oxide 29:30–33PubMedCrossRefGoogle Scholar
  30. Dalton DA, Baird LM, Langeberg L, Taugher CY, Anyan WR, Vance CP, Sarath G (1993) Subcellular localization of oxygen defense enzymes in soybean (Glycine max [L.] Merr.) root nodules. Plant Physiol 102:481–489PubMedCentralPubMedGoogle Scholar
  31. de Pinto MC, Locato V, Sgobba A, Romero-Puertas MC, Gadaleta C, Delledonne M, De Gara L (2013) S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco Bright Yellow-2 cells. Plant Physiol 163:1766–1775PubMedCentralPubMedCrossRefGoogle Scholar
  32. del Río LA, Javier Corpas F, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792PubMedCrossRefGoogle Scholar
  33. Diaz-Vivancos P, Faize M, Barba-Espin G, Faize L, Petri C, Hernández JA, Burgos L (2013) Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol J 11:976–985PubMedCrossRefGoogle Scholar
  34. Durner J, Gow AJ, Stamler JS, Glazebrook J (1999) Ancient origins of nitric oxide signaling in biological systems. Proc Natl Acad Sci U S A 96:14206–14207PubMedCentralPubMedCrossRefGoogle Scholar
  35. Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–284PubMedCrossRefGoogle Scholar
  36. Eltelib HA, Badejo AA, Fujikawa Y, Esaka M (2011) Gene expression of monodehydroascorbate reductase and dehydroascorbate reductase during fruit ripening and in response to environmental stresses in acerola (Malpighia glabra). J Plant Physiol 168:619–627PubMedCrossRefGoogle Scholar
  37. Fares A, Rossignol M, Peltier JB (2011) Proteomics investigation of endogenous S-nitrosylation in Arabidopsis. Biochem Biophys Res Commun 416:331–336PubMedCrossRefGoogle Scholar
  38. Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102:8054–8059PubMedCentralPubMedCrossRefGoogle Scholar
  39. Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25PubMedCrossRefGoogle Scholar
  40. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18PubMedCentralPubMedCrossRefGoogle Scholar
  41. Francescutti D, Baldwin J, Lee L, Mutus B (1996) Peroxynitrite modification of glutathione reductase: modeling studies and kinetic evidence suggest the modification of tyrosines at the glutathione disulfide binding site. Protein Eng 9:189–194PubMedCrossRefGoogle Scholar
  42. Gaston B, Reilly J, Drazen JM, Fackler J, Ramdev P, Arnelle D, Mullins ME, Sugarbaker DJ, Chee C, Singel DJ (1993) Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc Natl Acad Sci USA 90:10957–10961PubMedCentralPubMedCrossRefGoogle Scholar
  43. Gechev T, Willekens H, Van Montagu M, Inzo D, Van Camp W, Toneva V, Minkov I (2003) Different responses of tobacco antioxidant enzymes to light and chilling stress. J Plant Physiol 160:509–515PubMedCrossRefGoogle Scholar
  44. Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212PubMedCrossRefGoogle Scholar
  45. Gomez JM, Jimenez A, Olmos E, Sevilla F (2004) Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot 55:119–130PubMedCrossRefGoogle Scholar
  46. Gow AJ, Farkouh CR, Munson DA, Posencheg MA, Ischiropoulos H (2004) Biological significance of nitric oxide-mediated protein modifications. Am J Physiol Lung Cell Mol Physiol 287:L262–L268PubMedCrossRefGoogle Scholar
  47. Groβ F, Durner J, Gaupels F (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci 4:419Google Scholar
  48. Groden D, Beck E (1979) H2O2 destruction by ascorbate-dependent systems from chloroplasts. Biochim Biophys Acta 546:426–435PubMedCrossRefGoogle Scholar
  49. Holtgrefe S, Gohlke J, Starmann J, Druce S, Klocke S, Altmann B, Wojtera J, Lindermayr C, Scheibe R (2008) Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications. Physiol Planta 133:211–228CrossRefGoogle Scholar
  50. Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395Google Scholar
  51. Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J (2015) Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiol 167:1731–1746PubMedCrossRefGoogle Scholar
  52. Jespersen H, Kjrd I, Stergaard L, Welinder K (1997) From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J 326:305–310PubMedCentralPubMedCrossRefGoogle Scholar
  53. Jimenez A, Hernandez JA, del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284PubMedCentralPubMedGoogle Scholar
  54. Jimenez A, Hernandez JA, Pastori G, del Rio LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335PubMedCentralPubMedCrossRefGoogle Scholar
  55. Kato H, Takemoto D, Kawakita K (2013) Proteomic analysis of S-nitrosylated proteins in potato plant. Physiol Planta 148:371–386CrossRefGoogle Scholar
  56. Keyster M, Klein A, Egbich I, Jacobs A, Ludidi N (2011) Nitric oxide increases the enzymatic activity of three ascorbate peroxidase isoforms in soybean root nodules. Plant Signal Behav 6:956–961PubMedCentralPubMedCrossRefGoogle Scholar
  57. Kitajima S, Kurioka M, Yoshimoto T, Shindo M, Kanaori K, Tajima K, Oda K (2008) A cysteine residue near the propionate side chain of heme is the radical site in ascorbate peroxidase. FEBS J 275:470–480PubMedCrossRefGoogle Scholar
  58. Kubo A, Aono M, Nakajima N, Saji H, Tanaka K, Kondo N (1999) Differential responses in activity of antioxidant enzymes to different environmental stresses in Arabidopsis thaliana. J Plant Res 112:279–290CrossRefGoogle Scholar
  59. Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136PubMedCrossRefGoogle Scholar
  60. Leitner M, Vandelle E, Gaupels F, Bellin D, Delledonne M (2009) NO signals in the haze: nitric oxide signalling in plant defence. Curr Opin Plant Biol 12:451–458PubMedCrossRefGoogle Scholar
  61. Leterrier M, Corpas FJ, Barroso JB, Sandalio LM, Luis A (2005) Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol 138:2111–2123PubMedCentralPubMedCrossRefGoogle Scholar
  62. Leterrier M, Barroso JB, Valderrama R, Palma JM, Corpas FJ (2012) NADP-dependent isocitrate dehydrogenase from Arabidopsis roots contributes in the mechanism of defence against the nitro-oxidative stress induced by salinity. Sci World J. ID: 694740.Google Scholar
  63. Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake GJ, Chu C (2012) Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158:451–464PubMedCentralPubMedCrossRefGoogle Scholar
  64. Lin CC, Jih PJ, Lin HH, Lin JS, Chang LL, Shen YH, Jeng ST (2011) Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding. Plant Mol Biol 77:235–249PubMedCrossRefGoogle Scholar
  65. Lindermayr C, Durner J (2009) S-nitrosylation in plants: pattern and function. J Proteomics 73:1–9PubMedCrossRefGoogle Scholar
  66. Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900–914PubMedCrossRefGoogle Scholar
  67. Liu Z, Bao H, Cai J, Han J, Zhou L (2014) A novel thylakoid ascorbate peroxidase from Jatrophacurcas enhances salt tolerance in transgenic tobacco. Int J Mol Sci 15:171–185PubMedCentralCrossRefGoogle Scholar
  68. Lounifi I, Arc E, Molassiotis A, Job D, Rajjou L, Tanou G (2013) Interplay between protein carbonylation and nitrosylation in plants. Proteomics 13:568–578PubMedCrossRefGoogle Scholar
  69. Lozano-Juste J, Colom-Moreno R, León J (2011) In vivo protein tyrosine nitration in Arabidopsis thaliana. J Exp Bot 62:3501–3517PubMedCentralPubMedCrossRefGoogle Scholar
  70. Malik SI, Hussain A, Yun BW, Spoel SH, Loake GJ (2011) GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci 181:540–544PubMedCrossRefGoogle Scholar
  71. Mandelman D, Jamal J, Poulos TL (1998) Identification of two electron-transfer sites in ascorbate peroxidase using chemical modification, enzyme kinetics, and crystallography. Biochemistry 37:17610–17617PubMedCrossRefGoogle Scholar
  72. Martínez-Ruiz A, Lamas S (2007) Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences. Cardiovasc Res 75:220–228PubMedCrossRefGoogle Scholar
  73. Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856PubMedCrossRefGoogle Scholar
  74. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279CrossRefGoogle Scholar
  75. Oidaira H, Sano S, Koshiba T, Ushimaru T (2000) Enhancement of antioxidative enzyme activities in chilled rice seedlings. J Plant Physiol 156:811–813CrossRefGoogle Scholar
  76. Ortega-Galisteo AP, Rodríguez-Serrano M, Pazmino DM, Gupta DK, Sandalio LM, Romero-Puertas MC (2012) S-nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63:2089–2103PubMedCentralPubMedCrossRefGoogle Scholar
  77. Palma JM, Jiménez A, Sandalio LM, Corpas FJ, Lundqvist M, Gómez M, Sevilla F, del Río LA (2006) Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants. J Exp Bot 57:1747–1758PubMedCrossRefGoogle Scholar
  78. Patterson WR, Poulos TL (1995) Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry 34:4331–4341PubMedCrossRefGoogle Scholar
  79. Procházková D, Sumaira J, Wilhelmová Na, Pavlíková D, Száková J (2014) Reactive nitrogen species and the role of NO in abiotic stress. In: Ahmad P, Rasool S (ed) Emerging Technologies and Managment of Crops Stress Tolerance. Elsevier.Google Scholar
  80. Puyaubert J, Fares A, Rézé N, Peltier JB, Baudouin E (2014) Identification of endogenously S-nitrosylated proteins in Arabidopsis plantlets: effect of cold stress on cysteine nitrosylation level. Plant Sci 215:150–156PubMedCrossRefGoogle Scholar
  81. Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101:4003–4008PubMedCentralPubMedCrossRefGoogle Scholar
  82. Radi R (2013) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 46:550–559PubMedCentralPubMedCrossRefGoogle Scholar
  83. Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N, Luder F, Weckwerth W, Jahn O (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19:3170–3193PubMedCentralPubMedCrossRefGoogle Scholar
  84. Reumann S, Corpas FJ (2010) The peroxisomal ascorbate-glutathione pathway: molecular identification and insights into its essential role under environmental stress conditions. In: Anjum NA, Chan MT, Umar S (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, GermanyGoogle Scholar
  85. Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodríguez-Serrano M, Del Río LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52PubMedCrossRefGoogle Scholar
  86. Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AME, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M (2007) S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19:4120–4130PubMedCentralPubMedCrossRefGoogle Scholar
  87. Romero-Puertas MC, Campostrini N, Matte A, Righetti PG, Perazzolli M, Zolla L, Roepstorff P, Delledonne M (2008) Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 8:1459–1469PubMedCrossRefGoogle Scholar
  88. Rusterucci C, Espunya MC, Díaz M, Chabannes M, Martínez MC (2007) S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol 143:1282–1292PubMedCentralPubMedCrossRefGoogle Scholar
  89. Savvides SN, Scheiwein M, Bohme CC, Arteel GE, Karplus PA, Becker K, Schirmer RH (2002) Crystal structure of the antioxidant enzyme glutathione reductase inactivated by peroxynitrite. J Biol Chem 277:2779–2784PubMedCrossRefGoogle Scholar
  90. Shan C, Zhou Y, Liu M (2015) Nitric oxide participates in the regulation of the ascorbate-glutathione cycle by exogenous jasmonic acid in the leaves of wheat seedlings under drought stress. Protoplasma. doi: 10.1007/s00709-015-0756-y
  91. Shapiro AD (2005) Nitric oxide signaling in plants. Vitam Horm 72:339–398PubMedCrossRefGoogle Scholar
  92. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319PubMedCrossRefGoogle Scholar
  93. Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447–455PubMedCrossRefGoogle Scholar
  94. Souza JM, Peluffo G, Radi R (2008) Protein tyrosine nitration-functional alteration or just a biomarker? Free Radic Biol Med 45:357–366PubMedCrossRefGoogle Scholar
  95. Sun C, Liu L, Yu Y, Liu W, Lu L, Jin C, Lin X (2014) Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat. J Int Plant Biol 57:550–561CrossRefGoogle Scholar
  96. Tamura M, Saito M, Yamamoto K, Takeuchi T, Ohtake K, Tateno H, Hirabayashi J, Kobayashi J, Arata Y (2015) S-nitrosylation of mouse galectin-2 prevents oxidative inactivation by hydrogen peroxide. Biochem Biophys Res Commun 457:712–717PubMedCrossRefGoogle Scholar
  97. Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A (2012) Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72:585–599PubMedCrossRefGoogle Scholar
  98. Turko IV, Murad F (2002) Protein nitration in cardiovascular diseases. Pharmacol Rev 54:619–634PubMedCrossRefGoogle Scholar
  99. Valderrama R, Corpas FJ, Carreras A, Fernández-Ocaña A, Chaki M, Luque F, Gómez-Rodríguez MV, Colmenero-Varea P, Luis A, Barroso JB (2007) Nitrosative stress in plants. FEBS Lett 581:453–461PubMedCrossRefGoogle Scholar
  100. Wang D, Liu Y, Tan X, Liu H, Zeng G, Hu X, Jian H, Gu Y (2015) Effect of exogenous nitric oxide on antioxidative system and S-nitrosylation in leaves of Boehmeria nivea (L.) Gaud under cadmium stress. Environ Sci Pollut Res Int 22:3489–3497PubMedCrossRefGoogle Scholar
  101. Wu TM, Lin WR, Kao YT, Hsu YT, Yeh CH, Hong CY, Kao CH (2013) Identification and characterization of a novel chloroplast/mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice. Plant Mol Biol 83:379–390PubMedCrossRefGoogle Scholar
  102. Yang H, Mu J, Chen L, Feng J, Hu J, Li L, Zhou JM, Zuo J (2015) S-Nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses. Plant Physiol 167:1604–1615PubMedCrossRefGoogle Scholar
  103. Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156PubMedCrossRefGoogle Scholar
  104. Yun BW, Feechan A, Yin M, Saidi NBB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH, Pallas JA, Loake GJ (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268PubMedCrossRefGoogle Scholar
  105. Zhang X, Quan G, Wang J, Han H, Chen S, Guo S, Yin H (2015) Functional validation of Phragmites communis glutathione reductase (PhaGR) as an essential enzyme in salt tolerance. Appl Biochem Biotechnol 175:3418–3430PubMedCrossRefGoogle Scholar
  106. Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T (2013) Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One 8:e57472PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • J. C. Begara-Morales
    • 1
  • B. Sánchez-Calvo
    • 1
  • M. Chaki
    • 1
  • R. Valderrama
    • 1
  • C. Mata-Pérez
    • 1
  • M. N. Padilla
    • 1
  • F. J. Corpas
    • 2
  • J. B. Barroso
    • 1
    Email author
  1. 1.Biochemistry and Cell Signaling in Nitric Oxide Group, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental SciencesUniversity of JaénJaénSpain
  2. 2.Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of PlantsEstación Experimental del Zaidín, CSICGranadaSpain

Personalised recommendations