Role of Polyphenols as Antioxidants in Native Species from Argentina Under Drought and Salinization

  • Mariana Reginato
  • Celeste Varela
  • Ana M. Cenzano
  • Virginia LunaEmail author


Plants inhabiting arid environments are exposed to drought and, in several cases, also to salt stress as usually occurs in different regions in Argentina. These plants have developed different strategies to avoid or tolerate the lack of water and/or the excess of toxic ions during their development. As drought and salt stress lead to increased production of reactive oxygen species (ROS) in plant cells, halophytic and xerophytic species have the ability to reduce these toxic ROS by means of a powerful antioxidant system that includes enzymatic and nonenzymatic components. Production of phenolic compounds is one of the strategies used by some native species of these adverse environments, principally to protect their cells from the oxidative damage caused by drought and salinity. This chapter provides an overview of the oxidative response and the polyphenols involvement as part of a tolerance mechanism in five native species from Argentina: the shrubs Prosopis strombulifera, Larrea divaricata, and Lycium chilense and the grasses Pappostipa speciosa and Poa ligularis which have shown to have a high polyphenol production correlated with a high antioxidant capacity. Also, two of these native species may be considered as important sources of antioxidants and biomolecules for biotechnological purposes.


Drought Salinity Native species Oxidative stress Polyphenols 



We thank Mr. F. Sarasa who allowed us to harvest mother plants in his Estancia San Luis, Wildlife refuge “La Esperanza” of Natural Patagonia Foundation. This research was funded by the National Research Council of Argentina (CONICET), the Ministry of Science, Technology and Innovation of Chubut Province, and the National University of Río Cuarto, Córdoba, Argentina.


  1. Agastian P, Kingsley SJ, Vivekanandan M (2000) Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38:287–290CrossRefGoogle Scholar
  2. Agati G, Azzarelllo E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76PubMedCrossRefGoogle Scholar
  3. Andjelkovic M, van Camp J, de Meulenaer B, Depaemelaere G, Socaciu C, Verloo M, Verhe R (2008) Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem 98:23–31CrossRefGoogle Scholar
  4. Anesini C, Perez C (1993) Screening of plants used in Argentine folk medicine for antimicrobial activity. J Ethnopharmacol 39:119–128PubMedCrossRefGoogle Scholar
  5. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  6. Ares JO, Beeskow AM, Bertiller MB, Rostagno CM, Irisarri MP, Anchorena J, Defossé GE, Merino CA (1990) Structural and dynamic characteristics of vergrazed grasslands of northern Patagonia. In: Breymeyer A (ed) Managed grasslands. Regional studies. Elsevier, AmsterdamGoogle Scholar
  7. Argueta V (1994) Atlas de las Plantas de la Medicina Tradicional Mexicana, vol II. Instituto Nacional Indigenista, MexicoGoogle Scholar
  8. Ariza Espinar L, Barboza GE, Bonzani NE, Cantero JJ, Filippa EM (2006) Flora medicinal de la provincia de Córdoba. Pteridófitas y antófitas silvestres o naturalizadas Museo Botánico, CórdobaGoogle Scholar
  9. Arteaga S, Andrade-Cetto A, Cardenas R (2005) Larrea tridentata (creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid. J Ethnopharmacol 98:231–239PubMedCrossRefGoogle Scholar
  10. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396PubMedCentralPubMedCrossRefGoogle Scholar
  11. Awika JM, Rooney LW (2004) Sorghum phytochemicals and their potential impact on human health. Phytochemistry 65:1199–1221PubMedCrossRefGoogle Scholar
  12. Ayres MP, Clausen TP, MacLean SF, Redman AM, Reichardt PB (1997) Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712CrossRefGoogle Scholar
  13. Bartels D, Dinakar C (2013) Balancing salinity stress responses in halophytes and non-halophytes: a comparison between Thellungiella and Arabidopsis thaliana. Funct Plant Biol 40:819–831Google Scholar
  14. Beeskow AM, Del Valle H, Rostagno CM (1987) Los Sistemas fisiográficos de la Región Árida y Semiárida de la Provincia de Chubut. SECYT-Delegación Patagonia, BarilocheGoogle Scholar
  15. Bie Z, Tadashi I, Shinoara Y (2004) Effects of sodium sulfate and sodium bicarbonate on the growth, gas exchange and mineral composition of lettuce. Sci Hortic 99:215–224CrossRefGoogle Scholar
  16. Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonne E, Muller MJ, Oberritter H, Schulze M, Stehle P, Watzl B (2012) Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 51:637–663PubMedCentralPubMedCrossRefGoogle Scholar
  17. Boots AW, Haenen GRMM, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337PubMedCrossRefGoogle Scholar
  18. Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257PubMedCrossRefGoogle Scholar
  19. Brown JE, Khodr H, Hider RC, Rice-Evans CA (1998) Structural-dependence of flavonoid interactions with copper ions: implications for their antioxidant properties. Biochem J 330:1173–1178PubMedCentralPubMedCrossRefGoogle Scholar
  20. Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M (2013) Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int J Mol Sci 14:3540–3555PubMedCentralPubMedCrossRefGoogle Scholar
  21. Burkart A (1976) A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae) Catalogue of the recognized species of Prosopis. J Arnold Arbor 57:450–525Google Scholar
  22. Campanella MV, Bertiller MB (2008) Plant phenology, leaf traits and leaf litterfall of contrasting life forms in the arid Patagonian Monte, Argentina. J Veg Sci 19:75–85CrossRefGoogle Scholar
  23. Catalán L, Balzarini M, Taleisnik E, Sereno R, Karlin U (1994) Effects of salinity on germination and seedling growth of Prosopis flexuosa (D.C.). Forest Ecol Manag 63:347–357CrossRefGoogle Scholar
  24. Cenzano A, Varela MC, Bertiller M, Luna V (2013) Effect of drought on morphological and functional traits of Poa ligularis and Pappostipa speciosa, native perennial grasses with wide distribution in Patagonian rangelands, Argentina. Aust J Bot 61:383–393CrossRefGoogle Scholar
  25. Cenzano AM, Masciarelli O, Luna MV (2014) Abscisic acid metabolite profiling as indicators of plastic responses to drought in grasses from arid Patagonian Monte (Argentina). Plant Physiol Biochem 83:200–206PubMedCrossRefGoogle Scholar
  26. Chanwitheesuk A, Teerawutgulrag A, Rakariyatham N (2005) Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem 92:491–497CrossRefGoogle Scholar
  27. Dangles O, Dufour C (2008) Flavonoid-protein binding processes and their potential impact on human health. In: Daayf F, Lattanzio V (eds) Recent advances on polyphenol research, vol 1. Wiley-Blackwell, OxfordGoogle Scholar
  28. De Abreu IN, Mazzafera P (2005) Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol Biochem 43:241–248CrossRefGoogle Scholar
  29. Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626CrossRefGoogle Scholar
  30. Dixon RA, Paiva N (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097PubMedCentralPubMedCrossRefGoogle Scholar
  31. Duthie GG, Gardner PT, Kyle AM (2003) Plants polyphenols: are they the new magic bullet? Proc Nutr Sci 62:599–603CrossRefGoogle Scholar
  32. Felker P (2007) Unusual physiological properties of the arid adapted tree legume Prosopis and their applications in developing countries. In: De la Barrera E, Smith W (eds) Perspectives in biophysical plant ecophysiology: a tribute to Park Nobel. Mildred E. Mathias Botanical Garden, University of California Press, Los AngelesGoogle Scholar
  33. Fernandez OA, Busso CA (1999) Arid and semi-arid rangelands: two thirds of Argentina. Rala Report 200, Agricultural Res Inst, Reykjavik, IcelandGoogle Scholar
  34. Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364CrossRefGoogle Scholar
  35. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedCentralPubMedCrossRefGoogle Scholar
  36. Gray DE, Pallardy SG, Garrett HE, Rottinghaus G (2003) Acute drought stress and plant age effects on alkamide and phenolic acid content in purple coneflower roots. Planta Med 69:50–55PubMedCrossRefGoogle Scholar
  37. Hajlaoui H, Denden M, El Ayeb N (2009) Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Ind Crop Prod 30:144–151CrossRefGoogle Scholar
  38. Hapon MB, Hapon MV, Persia FA, Pochettino A, Lucero GS (2014) Aqueous extract of Prosopis strombulifera (LAM) Benth induces cytotoxic effects against tumor cell lines without systemic alterations in BALB/c mice. J Clin Toxicol 4:1–8CrossRefGoogle Scholar
  39. Hatier HB, Gould KS (2008) Anthocyanin function in vegetative organs. In: Gould K, Davies K, Winefield C (eds) Anthocyanins—biosynthesis, functions, and applications. Springer, New YorkGoogle Scholar
  40. Heim KE, Tagliafeno AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584PubMedCrossRefGoogle Scholar
  41. Hernández I, Alegre L, Munné-Bosch S (2006) Enhanced oxidation of flavan-3-ols and proanthocyanidin accumulation in water- stressed tea plants. Phytochemistry 67:1120–1126PubMedCrossRefGoogle Scholar
  42. Hidalgo M, Sánchez-Moreno C, Pascual-Teresa S (2010) Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chem 121:691–696CrossRefGoogle Scholar
  43. Hwu JR, Hsu MH, Huang RC (2008) New nordihydroguaiaretic acid derivates as anti-HIV agents. Bioorg Med Chem Lett 18:1884–1888PubMedCrossRefGoogle Scholar
  44. Hyder PW, Fredrickson EL, Estell RE, Tellez M, Gibbens RP (2002) Distribution and concentration of total phenolics, condensed tannins, and nordihydroguaiaretic acid (NDGA) in creosotebush (Larrea tridentata). Biochem Syst Ecol 30:905–912CrossRefGoogle Scholar
  45. Isabelle M, Lee BL, Lim MT, Koh WP, Huang D, Ong Ch N (2010) Antioxidant activity and profiles of common vegetables in Singapore. Food Chem 120:993–1003CrossRefGoogle Scholar
  46. Jaafar HZ, Ibrahim MH, Fakri NFM (2012) Impact of soil field water capacity on secondary metabolites, phenylalanine ammonia-lyase (PAL), malondialdehyde (MDA) and photosynthetic responses of Malaysian kacipfatimah (Labisia pumila Benth). Molecules 17:7305–7322PubMedCrossRefGoogle Scholar
  47. Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007) Antioxidative potentials as a protective mechanism in Catharanthus roseus (L.) G. Don. plants under salinity stress. Turk J Bot 3:245–251Google Scholar
  48. Julkunen-Tiito R, Nenadis N, Neugart S, Robson M, Agati G, Vepsäläinen J, Zipoli G, Nybakken L, Winkler B, Jansen M (2015) Assessing the response of plant flavonoids to UV radiation: an overview of appropriate techniques. Phytochem Rev 14:273–297CrossRefGoogle Scholar
  49. Khan MA, Qaiser M (2006) Halophytes of Pakistan: characteristics, distribution and potential economic usages. In: Khan MA (ed) Sabkha ecosystems Volume II: West and Central Asia. Springer, DordrechtCrossRefGoogle Scholar
  50. Khanbabaee K, Van Ree T (2001) Tannins: classification and definition. Nat Prod Rep 18:641–649PubMedCrossRefGoogle Scholar
  51. Kirakosyan A, Kaufman P, Warber S, Zick S, Aaronson K, Bolling S (2004) Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn plants. Physiol Planta 121:182–186CrossRefGoogle Scholar
  52. Kosová K, Vítámvás P, Urban MO, Prášil IT (2013) Plant proteome responses to salinity stress-comparison of glycophytes and halophytes. Funct Plant Biol 40:775–786Google Scholar
  53. Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review on the antioxidant potential of medicinal plant species. Food Bioprod Process 89:217–233CrossRefGoogle Scholar
  54. Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Chedly A (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem 45:244–249PubMedCrossRefGoogle Scholar
  55. Ksouri R, Smaoui A, Isoda H, Abdelly C (2012) Utilization of halophyte species as new sources of bioactive substances. J Arid Land Stud 22:41–44Google Scholar
  56. Lattanzio V, Kroon P, Quideau S, Treutter D (2008) Plant phenolics-secondary metabolites with diverse functions. In: Daayf F, Lattanzio V (eds) Recent advances in polyphenol research, vol 1. Wiley-Blackwell, OxfordGoogle Scholar
  57. Leopoldini M, Russo N, Toscani M (2011) The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem 125:288–306CrossRefGoogle Scholar
  58. Li AS, Bandy B, Tsang SS, Davison AJ (2000) DNA-breaking versus DNA-protecting activity of four phenolic compounds in vitro. Free Radic Res 33:551–566PubMedCrossRefGoogle Scholar
  59. Li Z, Qiang W, Xiao R, Cun-De P, De-An J (2010) Phenolics and plant allelopathy. Rev Mol 15:8933–8952CrossRefGoogle Scholar
  60. Lia V, Confalonieri C, Comas I, Hunziker J (2001) Molecular phylogeny of Larrea and its allies (Zygophyllaceae): reticulate evolution and the probable time of creosote bush arrival in North America. Mol Phylogenet Evol 21:309–320PubMedCrossRefGoogle Scholar
  61. Llanes A, Bertazza G, Palacio G, Luna V (2013) Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera. Plant Biol 15:118–125PubMedCrossRefGoogle Scholar
  62. Manivannan P, Abdul Jaleel C, Sankar B, Kishorekumar A, Murali P, Somasundaram R, Panneerselvam R (2008) Mineral uptake and biochemical changes in Helianthus annuus under treatment with different sodium salts. Colloids Surf B Biointerfaces 62:58–63PubMedCrossRefGoogle Scholar
  63. Martins S, Aguilar CN, de la Garza-Rodriguez I, Mussatto SI, Teixeira SA (2010) Kinetic study of nordihydroguaiaretic acid recovery from Larrea tridentata by microwave-assisted extraction. J Chem Technol Biotechnol 85:1142–1147CrossRefGoogle Scholar
  64. Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489PubMedCrossRefGoogle Scholar
  65. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467PubMedCrossRefGoogle Scholar
  66. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 9:405–410CrossRefGoogle Scholar
  67. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462PubMedCrossRefGoogle Scholar
  68. Motilva MJ, Serra A, Macià A (2013) Analysis of food polyphenols by ultra-high-performance liquid chromatography coupled to mass spectrometry: an overview. J Chromatogr A 1292:66–82PubMedCrossRefGoogle Scholar
  69. Muthukumarasamy M, Gupta SD, Pannerselvam R (2000) Enhancement of peroxidase, polyphenol oxidase and superoxide dismutase activities by triadimefon in NaCl stressed Raphanus sativus L. Biol Plant 43:317–320CrossRefGoogle Scholar
  70. Navarro JM, Flores P, Garrido C, Martinez V (2006) Changes in the contents of antioxidant compounds in pepper fruits at ripening stages, as affected by salinity. Food Chem 96:66–73CrossRefGoogle Scholar
  71. Neudörffer D, Bonnefont-Rousselot A, Legrand M, Fleury B, Largeron M (2004) 4-Hydroxycinnamic ethyl ester derivatives and related dehydrodimers: relationship between oxidation potential and protective effects against oxidation of low-density lipoproteins. J Agric Food Chem 52:2084–2091PubMedCrossRefGoogle Scholar
  72. Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134PubMedCrossRefGoogle Scholar
  73. Oh DH, Dassanayake M, Haas JS, Kropornika A, Wright C, D’Urzo MP, Hong H, Ali S, Hernandez A, Lambert GM, Inan G, Galbraith DW, Bressan RA, Yun DJ, Zhu JK, Cheeseman JM, Bohnert HJ (2010) Genome structures and halophyte-species gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiol 154:1040–1052PubMedCentralPubMedCrossRefGoogle Scholar
  74. Palacio L, Cantero JJ, Cusidó RM, Goleniowski ME (2012) Phenolic compound production in relation to differentiation in cell and tissue cultures of Larrea divaricata (Cav.). Plant Sci 193–194:1–7PubMedCrossRefGoogle Scholar
  75. Pan MH, Lai CS, Ho CT (2010) Anti-inflammatory activity of natural dietary flavonoids. Food Funct 1:15–31PubMedCrossRefGoogle Scholar
  76. Pang CH, Wang BS (2008) Oxidative stress and salt tolerance in plants. In: Lütge U, Matyssek R, Ramos C, Miguel F (eds) Progress in botany. Springer, BerlinGoogle Scholar
  77. Pérez C, Anesini C (1994a) Antibacterial activity of alimentary plants against Staphylococcus aureus growth. Am J Chin Med 22:169–174PubMedCrossRefGoogle Scholar
  78. Pérez C, Anesini C (1994b) In vitro antibacterial activity of Argentine folk medicinal plants against Salmonella typhi. J Ethnopharmacol 44:41–46PubMedCrossRefGoogle Scholar
  79. Perron NR, Brumaghin JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53:75–100PubMedCrossRefGoogle Scholar
  80. Peterson A, Murphy K (2015) Tolerance of lowland quinoa cultivars to sodium chloride and sodium sulfate salinity. Crop Sci 55:331–338CrossRefGoogle Scholar
  81. Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233PubMedCentralPubMedCrossRefGoogle Scholar
  82. Qasim M, Gulzar S, Khan MA (2011) Halophytes as medicinal plants. In: Ozturk M, Mermut AR, Celik A (eds) Urbanisation, land use, land degradation and environment. Daya, New DelhiGoogle Scholar
  83. Qasim M, Abideen Z, Adnan YM, Ansari R, Gul B, Ajmal Khan M (2014) Traditional ethno-botanical uses of medicinal plants from coastal areas of Pakistan. J Coast Life Med 2:22–30Google Scholar
  84. Ramani B, Reeck T, Debez A, Stelzerd R, Huchzermeyer B, Schmidt A, Papenbrock J (2006) Aster tripolium L. and Sesuvium portulacastrum L.: two halophytes, two strategies to survive in saline habitats. Plant Physiol Biochem 44:395–408PubMedCrossRefGoogle Scholar
  85. Ratera EL, Ratera MO (1980) Plantas de la Flora Argentina empleadas en Medicina Popular. Hemisferio Sur S.A, Buenos AiresGoogle Scholar
  86. Reginato M, Abdala G, Miersch O, Ruiz O, Moschetti E, Luna V (2012) Changes in the levels of jasmonates and free polyamines induced by Na2SO4 and NaCl in roots and leaves of the halophyte Prosopis strombulifera. Biologia 67:689–697CrossRefGoogle Scholar
  87. Reginato M, Reinoso H, Llanes A, Luna V (2013) Stomatal abundance and distribution in Prosopis strombulifera plants growing under different iso-osmotic salt treatments. Am J Plant Sci 4:80–90CrossRefGoogle Scholar
  88. Reginato M, Sosa L, Llanes A, Hampp E, Vettorazzi N, Reinoso H, Luna V (2014a) Na2SO4 and NaCl determine different growth responses and ion accumulation in the halophytic legume Prosopis strombulifera. Plant Biol 16:97–106PubMedCrossRefGoogle Scholar
  89. Reginato M, Castagna A, Furlán A, Castro S, Ranieri A, Luna V (2014b) Analysis of the oxidative damage in the halophyte Prosopis strombulifera salinized with NaCl and Na2SO4. Role of polyphenols as antioxidant protection. AoB Plants 6(SI: Physiology and ecology of halophytes—plants living in salt-rich environments):plu042. doi: 10.1093/aobpla/plu042 PubMedCentralPubMedCrossRefGoogle Scholar
  90. Reinoso H, Sosa L, Ramirez L, Luna V (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Can J Bot 82:618–628CrossRefGoogle Scholar
  91. Reinoso H, Sosa L, Reginato M, Luna V (2005) Histological alterations induced by sodium sulfate in the vegetative anatomy of Prosopis strombulifera (Lam.) Benth. World J Agric Sci 1:109–119Google Scholar
  92. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956PubMedCrossRefGoogle Scholar
  93. Roberts MR, Paul ND (2006) Seduced by the dark side: integrating molecular and ecological perspectives on defence against pests and pathogens. New Phytol 170:677–699PubMedCrossRefGoogle Scholar
  94. Roig F (2002) Flora medicinal mendocina. Las plantas medicinales y aromáticas de la provincia de Mendoza (Argentina). EDIUNC Serie Manuales N° 33, Mendoza, ArgentinaGoogle Scholar
  95. Saragusti AC, Bustos PS, Pierosan L, Cabrera JL, Chiabrando GA (2012) Involvement of the L-arginine-nitric oxide pathway in the antinociception caused by fruits of Prosopis strombulifera (Lam.) Benth. J Ethnopharmacol 140:117–122PubMedCrossRefGoogle Scholar
  96. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365PubMedCrossRefGoogle Scholar
  97. Selmar D, Kleinwächter M (2013) Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind Crop Prod 42:558–566CrossRefGoogle Scholar
  98. Sengupta S, Majumder AL (2010) Porteresia coarctata (Roxb.) Tateoka, a wild rice: a potential model for studying salt-stress biology in rice. Plant Cell Environ 33:526–542PubMedCrossRefGoogle Scholar
  99. Shi D, Sheng Y (2005) Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ Exp Bot 54:8–21CrossRefGoogle Scholar
  100. Sosa L, Llanes A, Reinoso H, Reginato M, Luna V (2005) Osmotic and specific ion effects on the germination of Prosopis strombulifera. Ann Bot 96:261–267PubMedCentralPubMedCrossRefGoogle Scholar
  101. Storey KB (1996) Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 29:1715–1733PubMedGoogle Scholar
  102. Tarchoune I, Sgherri C, Izzo R, Lachaal M, Ouerghi Z, Navari-Izzo F (2010) Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiol Biochem 9:772–777CrossRefGoogle Scholar
  103. Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561CrossRefGoogle Scholar
  104. Tattini M, Guidi L, Morassi-Bonzi L, Pinelli P, Remorini D, Degl’Innocenti E, Giordano C, Massai R, Agati G (2005) On the role of flavonoids in the integrated mechanisms of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation. New Phytol 167:457–470PubMedCrossRefGoogle Scholar
  105. Thelen GC, Vivanco JM, Newingham B, Good W, Bais HP, Landers P, Caesar A, Callaway RM (2005) Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives. Ecol Lett 8:209–217CrossRefGoogle Scholar
  106. Tounekti T, Vadel A, Oñate M, Khemira H, Munné-Bosch S (2010) Salt-induced oxidative stress in rosemary plants: damage or protection? Environ Exp Bot 71:298–305CrossRefGoogle Scholar
  107. Toursarkissian M (1980) Plantas medicinales de la Argentina. Sus nombres botánicos, vulgares, usos y distribución geográfica. Hemisferio Sur SA, Buenos AiresGoogle Scholar
  108. Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ, Soencer JPE (2010) Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients 2:1106–1131PubMedCentralPubMedCrossRefGoogle Scholar
  109. Wang W, Vinocur B, Altman A (2003) Plant response to drought, salinity and extreme temperatures: toward genetic engineering for stress tolerance. Planta 218:1–14PubMedCrossRefGoogle Scholar
  110. World Health Organization (WHO) (2003) Diet, nutrition and the prevention of chronic diseases. WHO technical report series, no. 916, GenevaGoogle Scholar
  111. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183PubMedCrossRefGoogle Scholar
  112. Zavodovskaya M, Campbell MJ, Maddux BA, Shiry L, Allan G, Hodges L, Kushner P, Kerner JA, Youngren JF, Goldfine ID (2008) Nordihydroguaiaretic acid (NDGA), an inhibitor of the HER2 and IGF-1 receptor tyrosine kinases, blocks the growth of HER2-overexpressing human breast cancer cells. J Cell Biochem 103:624–635PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mariana Reginato
    • 1
  • Celeste Varela
    • 1
  • Ana M. Cenzano
    • 2
  • Virginia Luna
    • 1
    Email author
  1. 1.Laboratorio de Fisiología Vegetal, Departamento de Ciencias NaturalesUniversidad Nacional de Río CuartoRío CuartoArgentina
  2. 2.Laboratorio de Ecofisiología y Bioquímica VegetalCentro Nacional Patagónico-Consejo Nacional de Investigaciones Científicas y TécnicasPuerto MadrynArgentina

Personalised recommendations