Skip to main content

Role of Oral Therapies in the Prevention of Coronary Restenosis: Insights from Randomized Clinical Trials

  • Chapter
  • 1038 Accesses

Abstract

Neo intimal hyperplasia after implantation of a bare metal stent (BMS) has become the main pathophysiology mechanism of coronary restenosis and stent failure during percutaneous coronary interventions (PCI). The use of drug eluting stents (DES) with local immunosuppressive drugs minimized the high frequency of in stent restenosis (ISR) observed after PCI with BMS and significantly reduced the risk of re-intervention. However, in spite of the world wide penetration of DES, in the USA, a quarter of PCI-patients still receive BMS and according to recent data, the market for BMS globally contributed around 40–45 % of the global coronary stent market in 2010 and it is expected to grow at a rate of 2 % between 2011 and 2016. BMS use is particularly high (over 50 %) in certain geographic areas with socioeconomic issues. Thus, many contemporary PCI-patients do not receive DES and are at a higher risk of restenosis. In the last decade, simultaneous with the introduction of DES, oral immunosuppressive or anti-inflammatory drugs given after BMS implantation have been used to reduce neo-intimal hyperplasia and ISR. From anti-inflammatory drugs such as prednisone or colchicine to immunosuppressive drugs like sirolimus, data are now available and several randomized studies had been conducted and reported their results, some of them at long term. However, in spite of these positive reports, none of these agents are included within revascularization guidelines. In this chapter, we review all randomized data in an attempt to find a clinical indication for these oral agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rodríguez AE, et al. Early decrease in minimal luminal diameter after successful percutaneous transluminal coronary angioplasty predicts late restenosis. Am J Cardiol. 1993;71:1391–5.

    Article  PubMed  Google Scholar 

  2. Rodríguez AE, et al. Time course and mechanism of early luminal diameter loss after percutaneous transluminal coronary angioplasty. Am J Cardiol. 1995;76:1131–4.

    Article  PubMed  Google Scholar 

  3. Mintz G, et al. Arterial remodeling after coronay angioplasty. A serial intravascular ultrasound study. Circulation. 1996;94:35–44.

    Article  CAS  PubMed  Google Scholar 

  4. Serruys PW, et al. A comparison of balloon expandable stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med. 1994;331:489–95.

    Article  CAS  PubMed  Google Scholar 

  5. Kastrati A, et al. Analysis of 14 trials comparing sirolimus-eluting stents with bare-metal stents. N Engl J Med. 2007;356(10):1030–9.

    Article  CAS  PubMed  Google Scholar 

  6. Dangas GD, et al. In-stent restenosis in the drug-eluting stent era. J Am Coll Cardiol. 2010;56(23):1897–907.

    Article  PubMed  Google Scholar 

  7. Bangalore S, et al. Short- and long-term outcomes with drug-eluting and bare-metal coronary stents: a mixed treatment comparison analysis of 117,762 patient-years of follow-up from randomized trials. Circulation. 2012;125(23):2873–91.

    Article  CAS  PubMed  Google Scholar 

  8. MacFadden EP, et al. Late stent trombosis in drug-eluting coronary stent after discontinuation of antiplatelet therapy. Lancet. 2004;364:1419–21.

    Google Scholar 

  9. Rodriguez A, et al. Late stent thrombosis the Damocles sword of drug eluting stents. EuroIntervention. 2007;2:512–7.

    PubMed  Google Scholar 

  10. Task Force on Myocardial Revascularization of the European Society of Cardiology and the European Association for Cardio-Thoracic Surgery; European Association for Percutaneous Cardiovascular Interventions. Guidelines on myocardial revascularization. Eur Heart J. 2010;31(20):2501–55.

    Article  Google Scholar 

  11. Levine GN, et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation. 2011;124(23):e574–651.

    Article  PubMed  Google Scholar 

  12. Dehmer GJ, et al. A contemporary view of diagnostic cardiac catheterization and percutaneous coronary intervention in the United States: a report from the CathPCI Registry of the National Cardiovascular Data Registry, 2010 through June 2011. J Am Coll Cardiol. 2012;60(20):2017–31.

    Article  PubMed  Google Scholar 

  13. PRWeb. Global coronary stents market (drug eluting & bare metal) is expected to reach USD 8.3 billion by 2016: transparency market. 2013. http://www.prweb.com/releases/2013/9/prweb11112353.htm. Accessed 30 Oct 2014.

  14. Lee CW, et al. Prospective randomized trial of corticosteroids for the prevention of restenosis after intracoronary stent implantation. Am Heart J. 1999;138:60–3.

    Article  CAS  PubMed  Google Scholar 

  15. Versaci F, et al. Immunosuppressive Therapy for the Prevention of Restenosis after Coronary Artery Stent Implantation Study. Immunosuppressive Therapy for the Prevention of Restenosis after Coronary Artery Stent Implantation (IMPRESS Study). J Am Coll Cardiol 2002;40(11):1935–42.

    Google Scholar 

  16. Rodriguez AE, et al. Pilot study of oral rapamycin to prevent restenosis in patients undergoing coronary stent therapy: Argentina Single-Center Study (ORAR Trial). J Invasive Cardiol. 2003;15(10):581–4.

    PubMed  Google Scholar 

  17. Hausleiter J, et al. Randomized, double-blind, placebo-controlled trial of oral sirolimus for restenosis prevention in patients with in-stent restenosis: the Oral Sirolimus to Inhibit Recurrent In-stent Stenosis (OSIRIS) trial. Circulation. 2004;110(7):790–5.

    Article  CAS  PubMed  Google Scholar 

  18. Tsuchikane E, et al. Impact of cilostazol on restenosis after percutaneous coronary balloon angioplasty. Circulation. 1999;100:21–6.

    Article  CAS  PubMed  Google Scholar 

  19. Nagaoka N, et al. Comparison of ticlopidine and cilostazol for the prevention of restenosis after percutaneous transluminal coronary angioplasty. Jpn Heart J. 2001;42:43–54.

    Article  CAS  PubMed  Google Scholar 

  20. Kornowski R, et al. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol. 1998;31(1):224–30.

    Article  CAS  PubMed  Google Scholar 

  21. Farb A, et al. Pathology of acute and chronic coronary stenting in humans. Circulation. 1999;99(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  22. Brara PS, et al. Pilot trial of oral rapamycin for recalcitrant restenosis. Circulation. 2003;107:1722–4.

    Article  PubMed  Google Scholar 

  23. Guarda E, et al. Oral rapamycin to prevent human coronary stent restenosis: a pilot study. Am Heart J. 2004;148(2):e9.

    Article  PubMed  Google Scholar 

  24. Ribichini F, et al. Immunosuppressive therapy with oral prednisone to prevent restenosis after PCI. A multicenter randomized trial. Am J Med. 2011;124(5):434–43.

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez AE, et al. Oral rapamycin after coronary bare-metal stent implantation to prevent restenosis: the Prospective, Randomized Oral Rapamycin in Argentina (ORAR II) Study. J Am Coll Cardiol. 2006;47:1522–9.

    Article  CAS  PubMed  Google Scholar 

  26. Stojkovic S, et al. Systemic rapamycin without loading dose for restenosis prevention after coronary bare metal stent implantation. Catheter Cardiovasc Interv. 2010;75:317–25.

    PubMed  Google Scholar 

  27. Cernigliaro C, et al. Preventing restenosis after implantation of bare stents with oral rapamycin: a randomized angiographic and intravascular ultrasound study with a 5-year clinical follow-up. Cardiology. 2010;115:77–86.

    Article  CAS  PubMed  Google Scholar 

  28. Rodriguez AE, et al. Randomized comparison of cost-saving and effectiveness of oral rapamycin plus bare-metal stents with drug-eluting stents: three-year outcome from the randomized oral rapamycin in Argentina (ORAR) III trial. Catheter Cardiovasc Interv. 2012;80:385–94.

    Article  PubMed  Google Scholar 

  29. Douglas JS, et al. Cilostazol for Restenosis Trial (CREST) Investigators. Coronary stent restenosis in patient treated with cilostazol. Circulation. 2005;112(18):2826–32.

    Google Scholar 

  30. Lee SW, et al. Comparison of triple versus dual antiplatelet therapy after drug-eluting stent implantation (from the DECLARE-Long trial). Am J Cardiol. 2007;100(7):1103–8.

    Article  CAS  PubMed  Google Scholar 

  31. Lee SW, Lee SW, et al. Drug-eluting stenting followed by cilostazol treatment reduces late restenosis in patients with diabetes mellitus the DECLARE-DIABETES Trial (A Randomized Comparison of Triple Antiplatelet Therapy with Dual Antiplatelet Therapy After Drug-Eluting Stent Implantation in Diabetic Patients). J Am Coll Cardiol. 2008;51(12):1181–7.

    Article  CAS  PubMed  Google Scholar 

  32. Rodriguez AE, et al. Comparison of cost-effectiveness of oral rapamycin plus bare-metal stents versus first generation of drug-eluting stents (from the Randomized Oral Rapamycin in Argentina [ORAR] 3 trial). Am J Cardiol. 2014;113(5):815–21.

    Article  PubMed  Google Scholar 

  33. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids — new mechanisms for old drugs. N Engl J Med. 2005;353:1711–23.

    Article  CAS  PubMed  Google Scholar 

  34. Buffon A, et al. Preprocedural serum levels of C-reactive protein predict early complications and late restenosis after coronary angioplasty. J Am Coll Cardiol. 1999;34:1512–21.

    Article  CAS  PubMed  Google Scholar 

  35. Kornowoski R, et al. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol. 1998;31:224–30.

    Article  Google Scholar 

  36. Stone GW, et al. A randomized trial of corticosteroids for the prevention of restenosis in 102 patients undergoing repeat coronary angioplasty. Cathet Cardiovasc Diagn. 1989;18:227–31.

    Article  CAS  PubMed  Google Scholar 

  37. Ribichini F, et al. Immunosuppressive oral prednisone after percutaneous interventions in patients with multi-vessel coronary artery disease. The IMPRESS-2/MVD study. EuroIntervention. 2005;2:173–80.

    Google Scholar 

  38. Ferrero V, et al. Long term results of immunosuppressive oral prednisone after coronary angioplasty in non-diabetic patients with elevated C- reactive protein levels. EuroIntervention. 2009;5:250–4.

    Article  PubMed  Google Scholar 

  39. Ribichini F, et al. Long-term clinical follow-up of the multicentre, randomized study to test immunosuppressive therapy with oral prednisone for the prevention of restenosis after percutaneous coronary interventions: Cortisone plus BMS or DES veRsus BMS alone to EliminAte Restenosis (CEREA-DES). Eur Heart J. 2013;34(23):1740–8.

    Article  CAS  PubMed  Google Scholar 

  40. Sardar P, et al. Steroids for the prevention of restenosis in bare-metal stents–a systematic review and meta-analysis. J Invasive Cardiol. 2012;24(3):98–103.

    PubMed  Google Scholar 

  41. Goto S. Cilostazol: potential mechanism of action for antithrombotic effects accompanied by a low rate of bleeding. Atheroscler Suppl. 2005;6(4):3–11.

    Article  CAS  PubMed  Google Scholar 

  42. Inoue T, et al. Cilostazol inhibits leukocyte integrin Mac-1, leading to a potential reduction in restenosis after coronary stent implantation. J Am Coll Cardiol. 2004;44:1408–14.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou H, et al. Triple versus dual antiplatelet therapy for coronary heart disease patients undergoing percutaneous coronary intervention: a meta-analysis. Exp Ther Med. 2013;6(4):1034–40.

    PubMed Central  PubMed  Google Scholar 

  44. Lee SW, et al. Comparison of dual versus triple antiplatelet therapy after drug-eluting stent according to stent length (from the pooled analysis of DECLARE trials). Am J Cardiol. 2013;112:1738–44.

    Article  CAS  PubMed  Google Scholar 

  45. Groth CG, et al. Sirolimus (rapamycin)-based therapy in human renal transplantation. Transplantation. 1997;67:1036–42.

    Article  Google Scholar 

  46. Mancini D, et al. Use of rapamycin slows progression of cardiac transplantation vasculopathy. Circulation. 2003;108:48–53.

    Article  CAS  PubMed  Google Scholar 

  47. Poon M, et al. Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest. 1996;98:2277–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Gallo R, et al. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation. 1999;99:2164–70.

    Article  CAS  PubMed  Google Scholar 

  49. Waksman R, et al. Oral rapamycin to inhibit restenosis after stenting of de novo coronary lesions: the Oral Rapamune to Inhibit Restenosis (ORBIT) study. J Am Coll Cardiol. 2004;44:1386–92.

    CAS  PubMed  Google Scholar 

  50. Rodriguez AE, et al. Role of oral rapamycin to prevent restenosis in patients with de novo lesions undergoing coronary stenting: results of the Argentina single centre study (ORAR trial). Heart. 2005;91:1433–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Rodriguez AE, et al. Percutaneous coronary intervention with oral sirolimus and bare metal stents has comparable safety and efficacy to treatment with drug eluting stents, but with significant cost saving: long-term follow-up results from the randomised, controlled ORAR III (Oral Rapamycin in ARgentina) study. EuroIntervention. 2009;5:255–64.

    Article  PubMed  Google Scholar 

  52. Dangas GD, et al. Long-term outcome of PCI versus CABG in insulin and non-insulin-treated diabetic patients: results from the FREEDOM trial. J Am Coll Cardiol. 2014;64(12):1189–97.

    Article  CAS  PubMed  Google Scholar 

  53. Mohr FW, et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet. 2013;381(9867):629–38.

    Article  PubMed  Google Scholar 

  54. Wijns W, et al. Endeavour zotarolimus-eluting stent reduces stent thrombosis and improves clinical outcomes compared with cypher sirolimus-eluting stent: 4-year results of the PROTECT randomized trial. Eur Heart J. 2014;35(40):2812–20.

    Article  CAS  PubMed  Google Scholar 

  55. Gada H, et al. 5-year results of a randomized comparison of XIENCE V everolimus-eluting and TAXUS paclitaxel-eluting stents: final results from the SPIRIT III trial (clinical evaluation of the XIENCE V everolimus eluting coronary stent system in the treatment of patients with de novo native coronary artery lesions). JACC Cardiovasc Interv. 2013;6(12):1263–6.

    Article  PubMed  Google Scholar 

  56. Dasari TW, et al. Systematic review of effectiveness of oral sirolimus after bare-metal stenting of coronary arteries for prevention of in-stent restenosis. Am J Cardiol. 2013;112(9):1322–7.

    Article  CAS  PubMed  Google Scholar 

  57. Cassese S, et al. ORAl iMmunosuppressive therapy to prevent in-stent rEstenosiS (RAMSES) cooperation: a patient-level meta-analysis of randomized trials. Atherosclerosis. 2014. http://dx.doi.org/10.1016/j.atherosclerosis.2014.09.021.

  58. Molad Y. Update on colchicine and its mechanism of action. Curr Rheumatol Rep. 2002;4:252–6.

    Article  PubMed  Google Scholar 

  59. Imazio M, et al. COlchicine for the Prevention of the Post-pericardiotomy Syndrome (COPPS): a multicentre, randomized, double-blind, placebocontrolled trial. Eur Heart J. 2010;31:2749–54.

    Article  CAS  PubMed  Google Scholar 

  60. O’Keefe Jr JH, et al. Ineffectiveness of colchicine for the prevention of restenosis after coronary angioplasty. J Am Coll Cardiol. 1992;19:1597–600.

    Article  PubMed  Google Scholar 

  61. Gradus-Pizlo I, et al. Local delivery of biodegradable microparticles containing colchicine or a colchicine analogue: effects on restenosis and implications for catheter-based drug delivery. J Am Coll Cardiol. 1995;26:1549–57.

    Article  CAS  PubMed  Google Scholar 

  62. Deftereos S, et al. Colchicine treatment for the prevention of bare-metal stent restenosis in diabetic patients. J Am Coll Cardiol. 2013;61(16):1679–85.

    Article  CAS  PubMed  Google Scholar 

  63. Ferns GA, et al. Probucol inhibits mononuclear cell adhesion to vascular endothelium in the cholesterol-fed rabbit. Atherosclerosis. 1993;100:171–81.

    Article  CAS  PubMed  Google Scholar 

  64. Tardif JC, et al. Probucol and multivitamins in the prevention of restenosis after coronary angioplasty. Multivitamins and Probucol Study Group. N Engl J Med. 1997;337:365–72.

    Article  CAS  PubMed  Google Scholar 

  65. Tardif JC, et al. Effects of succinobucol (AGI- 1067) after an acute coronary syndrome: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;371:1761–8.

    Article  CAS  PubMed  Google Scholar 

  66. Tardif JC, et al. Effects of AGI-1067 and probucol after percutaneous coronary interventions. Circulation. 2003;107:552–8.

    Article  CAS  PubMed  Google Scholar 

  67. Nunes GL, et al. Role of probucol in inhibiting intimal hyperplasia after coronary stent implantation: a randomized study. Am Heart J. 2006;152(914):e1–7.

    PubMed  Google Scholar 

  68. Reinoehl J, et al. Probucol-associated tachyarrhythmic events and QT prolongation: importance of gender. Am Heart J. 1996;131:1184–91.

    Article  CAS  PubMed  Google Scholar 

  69. Takahashi A, et al. Tranilast inhibits vascular smooth muscle cell growth and intimal hyperplasia by induction of p21(waf1/cip1/sdi1) and p53. Circ Res. 1999;84:543–50.

    Article  CAS  PubMed  Google Scholar 

  70. Tamai H, et al. Impact of tranilast on restenosis after coronary angioplasty: tranilast restenosis following angioplasty trial (TREAT). Am Heart J. 1999;138:968–75.

    Article  CAS  PubMed  Google Scholar 

  71. Tamai H, et al. The impact of tranilast on restenosis after coronary angioplasty: the Second Tranilast Restenosis Following Angioplasty Trial (TREAT-2). Am Heart J. 2002;143:506–13.

    Article  PubMed  Google Scholar 

  72. Holmes Jr DR, et al. Results of Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial. Circulation. 2002;106:1243–50.

    Article  PubMed  Google Scholar 

  73. Kasai T, et al. Pioglitazone attenuates neointimal thickening via suppression of the early inflammatory response in a porcine coronary after stenting. Atherosclerosis. 2008;197:612–9.

    Article  CAS  PubMed  Google Scholar 

  74. Marx N, et al. Pioglitazone reduces neointima volume after coronary stent implantation: a randomized, placebo-controlled, double-blind trial in nondiabetic patients. Circulation. 2005;112:2792–8.

    Article  CAS  PubMed  Google Scholar 

  75. Takagi T, et al. A prospective, multicenter, randomized trial to assess efficacy of pioglitazone on in-stent neointimal suppression in type 2 diabetes: POPPS (Prevention of In-Stent Neointimal Proliferation by Pioglitazone Study). JACC Cardiovasc Interv. 2009;2:524–31.

    Article  PubMed  Google Scholar 

  76. Nishio K, et al. A randomized comparison of pioglitazone to inhibit restenosis after coronary stenting in patients with type 2 diabetes. Diabetes Care. 2006;29:101–6.

    Article  CAS  PubMed  Google Scholar 

  77. Nesto RW, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Circulation. 2003;108:2941–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Matías Rodríguez-Granillo MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodríguez-Granillo, A.M., Santaera, O., Rodríguez, A.E. (2015). Role of Oral Therapies in the Prevention of Coronary Restenosis: Insights from Randomized Clinical Trials. In: Ambrose, J., Rodríguez, A. (eds) Controversies in Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-319-20415-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20415-4_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20414-7

  • Online ISBN: 978-3-319-20415-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics