Skip to main content

What Is the Optimal Stent Design? – The Pathologist’s Opinion

  • Chapter
  • 1059 Accesses

Abstract

More than 5 millions stents have been implanted in patients all over the world and it is estimated that the number will increase to 6.6 million by 2020. It has been almost 30 years since the first stent was implanted in man. Initially, stents were mainly used for bail out in patients with acute occlusion due to coronary dissection following balloon angioplasty. The first stents were typically mounted on high profile, rigid delivery platforms and were difficult to deploy, leading to acute/subacute stent thrombosis. Greater understanding of the need for effective antiplatelet therapy and also improvement in delivery and better stent designs helped to overcome early stent thrombosis. The resulting lower rates of restenosis as compared to balloon angioplasty propelled the use of stents in routine practice. However, restenosis was the “Achilles heel” of bare metal stents and the birth of drug eluting stents (DES) helped dramatically reduce restenosis but late stent thrombosis became an issue. Second generation DES have reduced the incidence of late stent thrombosis however, one of the mechanisms of late stent thrombosis is the development of atherosclerosis within the stented segment (“neoatherosclerosis”), which remains an issue because its development is increased in DES compared to BMS. Recently, third generation DES, using bioabsorable polymer rather than permanent polymer to deliver drug and fully biodegradable vascular scaffolds are available. Many believe that these will overcome the drawback of stenting as no permanent metal or polymer will be left behind. Studies in animals show that when bioabsorable polymers are used the endothelial lining is far more competent as compared to permanent polymers that have been shown to induce hypersensitivity reaction. Also, clinical studies have shown that bioabsorable polymers induce less late thrombosis as compared to permanent polymers. Similarly, in fully bioabsorbable scaffolds, the vascular reactivity and lumen enlargement are seen between 1 and 2 years after implantation and the polymers get replaced by proteoglycan matrix and collagen over time and that mild to moderate inflammation is associated with vessel enlargement. Overall what remains unclear is that bulky scaffolds ≥150 μm thickness may be associated again with greater late stent thrombosis. Therefore, we have to remain vigilant that we do not implant these fully bioabsorbable polymeric scaffolds in patients presenting with acute myocardial infarction until clearly clinical trials prove their safety.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sigwart U, Puel J, Mirkovitch V, et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med. 1987;316:701–6. doi:10.1056/NEJM198703193161201.

    Article  CAS  PubMed  Google Scholar 

  2. Morice M-C, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med. 2002;346:1773–80. doi:10.1056/NEJMoa012843.

    Article  CAS  PubMed  Google Scholar 

  3. Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med. 1994;331:489–95. doi:10.1056/NEJM199408253310801.

    Article  CAS  PubMed  Google Scholar 

  4. Serruys PW, Strauss BH, Beatt KJ, et al. Angiographic follow-up after placement of a self-expanding coronary-artery stent. N Engl J Med. 1991;324:13–7. doi:10.1056/NEJM199101033240103.

    Article  CAS  PubMed  Google Scholar 

  5. Roubin GS, Cannon AD, Agrawal SK, et al. Intracoronary stenting for acute and threatened closure complicating percutaneous transluminal coronary angioplasty. Circulation. 1992;85:916–27.

    Article  CAS  PubMed  Google Scholar 

  6. Shömig A, Neumann FJ, Kastrati A, et al. A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents. N Engl J Med. 1996;334:1084–9.

    Article  Google Scholar 

  7. Serruys PW, Kutryk MJB, Ong ATL. Coronary-artery stents. N Engl J Med. 2006;354:483–95. doi:10.1056/NEJMra051091.

    Article  CAS  PubMed  Google Scholar 

  8. Schatz RA, Baim DS, Leon M, et al. Clinical experience with the Palmaz-Schatz coronary stent. Initial results of a multicenter study. Circulation. 1991;83(1):148–61.

    Article  CAS  PubMed  Google Scholar 

  9. Mehta RH, Harjai KJ, Cox D, et al. Clinical and angiographic correlates and outcomes of suboptimal coronary flow inpatients with acute myocardial infarction undergoing primary percutaneous coronary intervention. J Am Coll Cardiol. 2003;42:1739–46.

    Article  PubMed  Google Scholar 

  10. Grines CL, Cox DA, Stone GW, et al. Coronary angioplasty with or without stent implantation for acute myocardial infarction. Stent Primary Angioplasty in Myocardial Infarction Study Group. N Engl J Med. 1999;341:1949–56. doi:10.1056/NEJM199912233412601.

    Article  CAS  PubMed  Google Scholar 

  11. Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003;349:1315–23. doi:10.1056/NEJMoa035071.

    Article  CAS  PubMed  Google Scholar 

  12. Kerner A, Gruberg L, Kapeliovich M, Grenadier E. Late stent thrombosis after implantation of a sirolimus-eluting stent. Catheter Cardiovasc Interv. 2003;60:505–8. doi:10.1002/ccd.10712.

    Article  PubMed  Google Scholar 

  13. Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004;109:701–5. doi:10.1161/01.CIR.0000116202.41966.D4.

    Article  PubMed  Google Scholar 

  14. Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48:193–202. doi:10.1016/j.jacc.2006.03.042.

    Article  PubMed  Google Scholar 

  15. Dangas GD, Serruys PW, Kereiakes DJ, et al. Meta-analysis of everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease: final 3-year results of the SPIRIT clinical trials program (Clinical Evaluation of the Xience V Everolimus Eluting Coronary Stent System in the Treatment of Patients with De Novo Native Coronary Artery Lesions). JACC Cardiovasc Interv. 2013;6:914–22. doi:10.1016/j.jcin.2013.05.005.

    Article  PubMed  Google Scholar 

  16. Otsuka F, Vorpahl M, Nakano M, et al. Pathology of second-generation everolimus-eluting stents versus first-generation sirolimus- and paclitaxel-eluting stents in humans. Circulation. 2014;129:211–23. doi:10.1161/CIRCULATIONAHA.113.001790.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Brugaletta S, Garcia-Garcia HM, Serruys PW, Maehara A, Farooq V, Mintz GS, de Bruyne B, Marso SP, Verheye S, Dudek D, Hamm CW, Farhat N, Schiele F, McPherson J, Lerman A, Moreno PR, Wennerblom B, Fahy M, Templin B, Morel MA, van Es GA, Stone GW. Relationship between palpography and virtual histology in patients with acute coronary syndromes. JACC Cardiovasc Imaging. 2012;5(3 Suppl):S19–27.

    Article  PubMed  Google Scholar 

  18. Lansky AJ, Roubin GS, O’Shaughnessy CD, et al. Randomized comparison of GR-II stent and Palmaz-Schatz stent for elective treatment of coronary stenoses. Circulation. 2000;102:1364–8.

    Article  CAS  PubMed  Google Scholar 

  19. Garasic JM, Edelman ER, Squire JC, et al. Stent and artery geometry determine intimal thickening independent of arterial injury. Circulation. 2000;101:812–8. doi:10.1161/01.CIR.101.7.812.

    Article  CAS  PubMed  Google Scholar 

  20. Schwartz RS, Huber KC, Murphy JG, et al. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol. 1992;19:267–74.

    Article  CAS  PubMed  Google Scholar 

  21. Kornowski R, Hong MK, Tio FO, et al. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol. 1998;31:224–30.

    Article  CAS  PubMed  Google Scholar 

  22. Siewiorek GM, Finol EA, Wholey MH. Clinical significance and technical assessment of stent cell geometry in carotid artery stenting. J Endovasc Ther. 2009;16:178–88. doi:10.1583/08-2583.1.

    Article  PubMed  Google Scholar 

  23. Canan T, Lee MS. Drug-eluting stent fracture: incidence, contributing factors, and clinical implications. Catheter Cardiovasc Interv. 2010;75:237–45. doi:10.1002/ccd.22212.

    Article  PubMed  Google Scholar 

  24. Murasato Y, Hikichi Y, Horiuchi M. Examination of stent deformation and gap formation after complex stenting of left main coronary artery bifurcations using microfocus computed tomography. J Interv Cardiol. 2009;22:135–44. doi:10.1111/j.1540-8183.2009.00436.x.

    Article  PubMed  Google Scholar 

  25. Kastrati A, Mehilli J, Dirschinger J, et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation. 2001;103:2816–21.

    Article  CAS  PubMed  Google Scholar 

  26. Jiménez JM, Davies PF. Hemodynamically driven stent strut design. Ann Biomed Eng. 2009;37:1483–94. doi:10.1007/s10439-009-9719-9.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Farb A, Sangiorgi G, Carter AJ, et al. Pathology of acute and chronic coronary stenting in humans. Circulation. 1999;99:44–52. doi:10.1161/01.CIR.99.1.44.

    Article  CAS  PubMed  Google Scholar 

  28. Sata M, Saiura A, Kunisato A, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med. 2002;8:403–9. doi:10.1038/nm0402-403.

    Article  CAS  PubMed  Google Scholar 

  29. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340:115–26. doi:10.1056/NEJM199901143400207.

    Article  CAS  PubMed  Google Scholar 

  30. Farb A, Kolodgie FD, Hwang JY, et al. Extracellular matrix changes in stented human coronary arteries. Circulation. 2004;110:940–7. doi:10.1161/01.CIR.0000139337.56084.30.

    Article  CAS  PubMed  Google Scholar 

  31. Virmani R, Kolodgie FD, Farb A, Lafont A. Drug eluting stents: are human and animal studies comparable? Heart. 2003;89:133–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Otsuka F, Finn AV, Yazdani SK, et al. The importance of the endothelium in atherothrombosis and coronary stenting. Nat Rev Cardiol. 2012;9:439–53. doi:10.1038/nrcardio.2012.64.

    Article  CAS  PubMed  Google Scholar 

  33. Chaabane C, Otsuka F, Virmani R, Bochaton-Piallat ML. Biological responses in stented arteries. Cardiovasc Res. 2013;99:353–63. doi:10.1093/cvr/cvt115.

    Article  CAS  PubMed  Google Scholar 

  34. Dibra A, Kastrati A, Mehilli J, et al. Paclitaxel-eluting or sirolimus-eluting stents to prevent restenosis in diabetic patients. N Engl J Med. 2005;353:663–70. doi:10.1056/NEJMoa044372.

    Article  CAS  PubMed  Google Scholar 

  35. Finn AV, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation. 2007;115:2435–41. doi:10.1161/CIRCULATIONAHA.107.693739.

    Article  PubMed  Google Scholar 

  36. Guagliumi G, Sirbu V, Musumeci G, et al. Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging. JACC Cardiovasc Interv. 2012;5:12–20. doi:10.1016/j.jcin.2011.09.018.

    Article  PubMed  Google Scholar 

  37. Nakazawa G, Finn AV, Joner M, et al. Delayed arterial healing and increased late stent thrombosis at culprit sites after drug-eluting stent placement for acute myocardial infarction patients: an autopsy study. Circulation. 2008;118:1138–45. doi:10.1161/CIRCULATIONAHA.107.762047.

    Article  PubMed  Google Scholar 

  38. De Waha A, Stefanini GG, King LA, et al. Long-term outcomes of biodegradable polymer versus durable polymer drug-eluting stents in patients with diabetes a pooled analysis of individual patient data from 3 randomized trials. Int J Cardiol. 2013;168:5162–6. doi:10.1016/j.ijcard.2013.07.263.

    Article  PubMed  Google Scholar 

  39. Nakano M, Otsuka F, Yahagi K, et al. Human autopsy study of drug-eluting stents restenosis: histomorphological predictors and neointimal characteristics. Eur Heart J. 2013;34:3304–13. doi:10.1093/eurheartj/eht241.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Windecker S, Remondino A, Eberli FR, et al. Sirolimus-eluting and paclitaxel-eluting stents for coronary revascularization. N Engl J Med. 2005;353:653–62. doi:10.1056/NEJMoa051175.

    Article  CAS  PubMed  Google Scholar 

  41. Nakazawa G, Finn AV, Vorpahl M, et al. Coronary responses and differential mechanisms of late stent thrombosis attributed to first-generation sirolimus- and paclitaxel-eluting stents. J Am Coll Cardiol. 2011;57:390–8. doi:10.1016/j.jacc.2010.05.066.

    Article  CAS  PubMed  Google Scholar 

  42. Farb A, Heller PF, Shroff S, et al. Pathological analysis of local delivery of paclitaxel via a polymer-coated stent. Circulation. 2001;104:473–9.

    Article  CAS  PubMed  Google Scholar 

  43. Otsuka F, Yahagi K, Ladich E, Kutys R, Alexander R, Fowler D, Virmani R, Joner M. Images in cardiovascular medicine hypersensitivity reaction in the US Food and Drug Administration-approved second-generation drug-eluting stents: histopathological assessment with ex vivo optical coherence tomography. Circulation. 2015;131(3):322–4. doi:10.3904/kjim.2013.28.1.108.4.

    Article  PubMed  Google Scholar 

  44. Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol. 2011;57:1314–22. doi:10.1016/j.jacc.2011.01.011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Meredith IT, Verheye S, Dubois CL, et al. Primary endpoint results of the EVOLVE trial: a randomized evaluation of a novel bioabsorbable polymer-coated, everolimus-eluting coronary stent. J Am Coll Cardiol. 2012;59:1362–70. doi:10.1016/j.jacc.2011.12.016.

    Article  CAS  PubMed  Google Scholar 

  46. Koppara T, Wittchow E, Byrne RA, et al. Permanent and biodegradable polymer coatings in the absence of antiproliferative drugs in a porcine model of coronary artery stenting. EuroIntervention. 2014. doi:10.4244/EIJY14M10_08.

    PubMed  Google Scholar 

  47. Otsuka F, Pacheco E, Perkins LEL, et al. Long-term safety of an everolimus-eluting bioresorbable vascular scaffold and the cobalt-chromium XIENCE V stent in a porcine coronary artery model. Circ Cardiovasc Interv. 2014;7:330–42. doi:10.1161/CIRCINTERVENTIONS.113.000990.

    Article  CAS  PubMed  Google Scholar 

  48. Nakazawa G, Finn AV, Kolodgie FD, Virmani R. A review of current devices and a look at new technology: drug-eluting stents. Expert Rev Med Devices. 2009;6:33–42. doi:10.1586/17434440.6.1.33.

    Article  CAS  PubMed  Google Scholar 

  49. Charron T, Nili N, Straus BH. The cell cycle: a critical therapeutic target to prevent vascular proliferative disease. Can J Cardiol. 2006;22:41B–55B.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Lüscher TF, Steffel J, Eberli FR, Joner M, Nakazawa G, Tanner FC, Virmani R. Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation. 2007;115(8):1051–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Virmani MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mori, H., Yahagi, K., Virmani, R., Joner, M., Finn, A.V. (2015). What Is the Optimal Stent Design? – The Pathologist’s Opinion. In: Ambrose, J., Rodríguez, A. (eds) Controversies in Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-319-20415-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20415-4_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20414-7

  • Online ISBN: 978-3-319-20415-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics