Advertisement

Near-Wall Study of a Turbulent Boundary Layer Using High-Speed Tomo-PIV

  • Fabio J. W. A. Martins
  • Jean-Marc Foucaut
  • Luis F. A. Azevedo
  • Michel StanislasEmail author
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 23)

Abstract

The fundamental study of the near-wall structure organization in turbulent flows is crucial to understand the self-generation process of turbulence. To investigate such phenomena, an experiment of high-repetition, 6-camera tomo-PIV in a boundary layer was performed. Vector fields generated from BIMART high-quality reconstructed volumes resulted in low measurement uncertainties. The comparison of turbulence statistics from tomographic PIV and hot-wire anemometer data shows an excellent agreement. Preliminary vortex detection from Q-criterion is presented and allows the identification of dispersed vortices around the low-speed streaks in the boundary layer. Nevertheless an accurate identification of turbulent structures is not yet achieved. The postprocessing is being reviewed and the discussion of the interaction and evolution of turbulent structures will be addressed in a future paper.

Keywords

Turbulent Structure Interrogation Window Particle Tracking Velocimetry Wall Unit Velocity Gradient Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was carried out in the frame of the joint supervision of PhD of Fabio Martins held at both PUC-Rio (Brazil) and EC-Lille (France). It was funded by the PUC-Rio and the Brazilian scholarship CAPES grant no. BEX 9249/12-5. The experiment had the financial support of AFDAR European project, ANR Vive3D contract, and CISIT. The tomo-PIV software was developed as a result of the partnership between Pprime (Poitiers), Coria (Rouen), and LML (Lille) laboratories in the frame of the VIV3D ANR project. L. David, B. Tremblais, and P. Braud—from Pprime—and B. Lecordier, G. Godard and C. Gobin—from Coria—are acknowledged for the cooperation in the tomo-PIV software and S. Coudert and A.C. Avelar for the participation in the experiment.

References

  1. 1.
    R. Adrian, C. Meinhart, C. Tomkins, Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    C. Atkinson, J. Soria, An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp. Fluids 47(4–5), 553–568 (2009)CrossRefGoogle Scholar
  3. 3.
    C. Atkinson, S. Coudert, J.-M. Foucaut, M. Stanislas, J. Soria, The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer. Exp. Fluids 50(4), 1031–1056 (2011)CrossRefGoogle Scholar
  4. 4.
    C. Byrne, Block-iterative algorithms. Int. Trans. Oper. Res. 16(4), 427–463 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Carlier, M. Stanislas, Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J. Fluid Mech. 535(36), 143–188 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Chakraborty, S. Balachandar, R. Adrian, On the relationships between local vortex identification schemes. J. Fluid Mech. 535(2005), 189–214 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Discetti, T. Astarita, A fast multi-resolution approach to tomographic PIV. Exp. Fluids 52(3), 765–777 (2012)CrossRefGoogle Scholar
  8. 8.
    G. Elsinga, F. Scarano, B. Wieneke, B.W. van Oudheusden, Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006)CrossRefGoogle Scholar
  9. 9.
    J.-M. Foucaut, S. Coudert, M. Stanislas, J. Delville, Full 3D correlation tensor computed from double field stereoscopic PIV in a high Reynolds number turbulent boundary layer. Exp. Fluids 50(4), 839–846 (2011)CrossRefGoogle Scholar
  10. 10.
    J.-M. Foucaut, M. Stanislas, Some considerations on the accuracy and frequency response of some derivative filters applied to PIV vector fields. Meas. Sci. Technol. 13(7), 1058–1071 (2002)CrossRefGoogle Scholar
  11. 11.
    J.-M. Foucaut, S. Coudert, A. Avelar, B. Lecordier, G. Godard, C. Gobin, L. Thomas, P. Braud, L. David, Experiment of high repetition tomographic PIV in a high Reynolds number turbulent boundary layer wind tunnel, in PIV’11—Ninth International Symposium on Particle Image Velocimetry. Kobe, Japan (2011)Google Scholar
  12. 12.
    D. Garcia, Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54(4), 1167–1178 (2010)zbMATHCrossRefGoogle Scholar
  13. 13.
    T. Hori, J. Sakakibara, High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids. Meas. Sci. Technol. 15(6), 1067 (2004)CrossRefGoogle Scholar
  14. 14.
    J. Hunt, A. Wray, P. Moin, Eddies, streams, and convergence zones in turbulent flows, in Studying Turbulence Using Numerical Simulation Databases, vols. 1, 2, (1988), pp. 193–208Google Scholar
  15. 15.
    C.J. Kähler, J. Kompenhans, Fundamentals of multiple plane stereo particle image velocimetry. Exp. Fluids 29(1), S070–S077 (2000)Google Scholar
  16. 16.
    H.G. Maas, A. Gruen, D. Papantoniou, Particle tracking velocimetry in three-dimensional flows. Exp. Fluids 15(2), 133–146 (1993)CrossRefGoogle Scholar
  17. 17.
    F. Martins, J.-M. Foucaut, L. Thomas, L. Azevedo, M. Stanislas, Volume reconstruction optimization for tomo-PIV experimental data, in Final International Workshop on Advanced Flow Diagnostics for Aeronautical Research—AFDAR, Lille, France (2014)Google Scholar
  18. 18.
    D. Michaelis, M. Novara, F. Scarano, B. Wieneke, Comparison of volume reconstruction techniques at different particle densities, in 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal (2010)Google Scholar
  19. 19.
    R. Moffat, Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1(1), 3–17 (1988)CrossRefGoogle Scholar
  20. 20.
    M. Novara, K. Batenburg, F. Scarano, Motion tracking-enhanced MART for tomographic PIV. Meas. Sci. Technol. 21(3), 35401 (2010)CrossRefGoogle Scholar
  21. 21.
    F. Pereira, M. Gharib, D. Dabiri, D. Modarress, Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows. Exp. Fluids 29(1), S078–S084 (2000)Google Scholar
  22. 22.
    S. Petra, C. Schnörr, A. Schröder, B. Wieneke, Tomographic image reconstruction in experimental fluid dynamics: synopsis and problems, in Mathematical Modelling of Environmental and Life Sciences Problems (2007)Google Scholar
  23. 23.
    S. Robinson, Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23(1), 601–639 (1991)CrossRefGoogle Scholar
  24. 24.
    F. Scarano, Tomographic PIV: principles and practice. Meas. Sci. Technol. 24(1), 012001 (2013)CrossRefGoogle Scholar
  25. 25.
    F. Scarano, C. Poelma, Three-dimensional vorticity patterns of cylinder wakes. Exp. Fluids 47(1), 69–83 (2009)CrossRefGoogle Scholar
  26. 26.
    U. Schnars, W. Jüptner, Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33(2), 179–181 (1994)zbMATHCrossRefGoogle Scholar
  27. 27.
    W. Schoppa, F. Hussain, Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453(1), 57–108 (2002)zbMATHMathSciNetGoogle Scholar
  28. 28.
    M. Stanislas, L. Perret, J.-M. Foucaut, Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327–382 (2008)zbMATHCrossRefGoogle Scholar
  29. 29.
    L. Thomas, B. Tremblais, L. David, Optimisation of the volume reconstruction for classical tomo-PIV algorithms (MART, BIMART and SMART): synthetic and experimental studies. Meas. Sci. Technol. 25(3), 035303 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Westerweel, F. Scarano, Universal outlier detection for PIV data. Exp. Fluids 39(6), 1096–1100 (2005)CrossRefGoogle Scholar
  31. 31.
    B. Wieneke, Volume self-calibration for 3D particle image velocimetry. Exp. Fluids 45(4), 549–556 (2008)zbMATHCrossRefGoogle Scholar
  32. 32.
    C. Willert, Stereoscopic digital particle image velocimetry for application in wind tunnel flows. Meas. Sci. Technol. 8(12), 1465–1479 (1997)CrossRefGoogle Scholar
  33. 33.
    N. Worth, T. Nickels, Acceleration of Tomo-PIV by estimating the initial volume intensity distribution. Exp. Fluids 45(5), 847–856 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fabio J. W. A. Martins
    • 1
  • Jean-Marc Foucaut
    • 1
  • Luis F. A. Azevedo
    • 2
  • Michel Stanislas
    • 1
    Email author
  1. 1.Laboratoire de Mécanique de Lille (LML)Villeneuve-d’AscqFrance
  2. 2.Mechanical Engineering DepartmentPUC-RioRio de JaneiroBrazil

Personalised recommendations