Experimental Investigation of a Turbulent Boundary Layer Subject to an Adverse Pressure Gradient at \(Re_{\theta }\) up to 10000 Using Large-Scale and Long-Range Microscopic Particle Imaging

  • Tobias KnoppEmail author
  • Nicolas A. Buchmann
  • Daniel Schanz
  • Christian Cierpka
  • Rainer Hain
  • Andreas Schröder
  • Christian J. Kähler
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 23)


We present an experimental investigation and data analysis of a turbulent boundary layer flow at a significant adverse pressure gradient for two Reynolds numbers \(Re_\theta =6200\) and \(Re_\theta =8000\). We perform detailed multi-resolution measurements by combining large-scale and long-range microscopic particle imaging. We investigate scaling laws for the mean velocity and for the total shear stress in the inner layer. In the inner part of the inner layer the mean velocity can be fitted by a log-law. In the outer part a modified log-law provides a good fit, which depends on the pressure gradient parameter and on a parameter for the mean inertial effects. Emphasis is on the Reynolds number effects on the mean velocity and shear stress.


Turbulent Boundary Layer Adverse Pressure Gradient Particle Tracking Velocimetry Total Shear Stress Turbulent Boundary Layer Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Prof. Skare for providing his data. The authors are also grateful to Profs. Rossow, Radespiel, Nagib and Herwig and to Drs. B. Eisfeld, A. Krumbein and D. Schwamborn for valuable discussions and suggestions.


  1. 1.
    A.E. Alving, H.H. Fernholz, Mean-velocity scaling in and around a mild, turbulent separation bubble. Phys. Fluids 7, 1956–1969 (1995)CrossRefGoogle Scholar
  2. 2.
    K.C. Brown, P.N. Joubert, The measurement of skin friction in turbulent boundary layers with adverse pressure gradients. J. Fluid Mech. 35, 737–757 (1969)CrossRefGoogle Scholar
  3. 3.
    K.A. Chauhan, P.A. Monkewitz, H.M. Nagib, Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41, 021404 (2009)CrossRefGoogle Scholar
  4. 4.
    C. Cierpka, S. Scharnowski, C.J. Kähler, Parallax correction for precise near-wall flow investigations using particle imaging. Appl. Opt. 52, 2923–2931 (2013)CrossRefGoogle Scholar
  5. 5.
    C.M. de Silva, E.G. Gnanamanickam, C. Atkinson, N.A. Buchmann, N. Hutchins, J. Soria, I. Marusic, High spatial range velocity measurements in a high Reynolds number turbulent boundary layer. Phys. Fluids 26:025117–1–19 (2014)Google Scholar
  6. 6.
    S.A. Dixit, O.N. Ramesh, Determination of skin friction in strong pressure-gradient equilibrium and near-equilibrium turbulent boundary layers. Exp. Fluids 47, 1045–1058 (2009)CrossRefGoogle Scholar
  7. 7.
    K. Gersten, H. Herwig, Strömungsmechanik. Grundlagen der Impuls-, Wärme- und Stoffübertragung aus asymptotischer Sicht. Vieweg, 1992Google Scholar
  8. 8.
    A.G. Gungor, Y. Maciel, M.P. Simens, J. Soria, Analysis of a turbulent boundary layer subjected to a strong adverse pressure gradient. J. Phys.: Conf. Ser. 506, 012007 (2014)Google Scholar
  9. 9.
    S. Herpin, C.Y. Wong, M. Stanislas, J. Soria, Stereoscopic PIV measurements of a turbulent boundary layer with a large spatial dynamic range. Exp. Fluids 45, 745–763 (2008)CrossRefGoogle Scholar
  10. 10.
    C.J. Kähler, S. Scharnowski, C. Cierpka, On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52, 1641–1656 (2012)zbMATHCrossRefGoogle Scholar
  11. 11.
    T. Knopp, N.A. Buchmann, D. Schanz, B. Eisfeld, C. Cierpka, R. Hain, A. Schröder,C.J. Kähler, Investigation of scaling laws in a turbulent boundary layer flow with adverse pressure gradient using PIV. J Turbul 16, 250–272 (2015)Google Scholar
  12. 12.
    T. Knopp, D. Schanz, A. Schröder, M. Dumitra, R. Hain, C.J. Kähler, Experimental investigation of the log-law for an adverse pressure gradient turbulent boundary layer flow at \(Re_\theta \) up to 10000. Flow Turbul. Combust. 92, 451–471 (2014)CrossRefGoogle Scholar
  13. 13.
    H. McDonald, The effect of pressure gradient on the law of the wall in turbulent flow. J. Fluid Mech. 35, 311–336 (1969)CrossRefGoogle Scholar
  14. 14.
    H. Nagib. Personal communication. 2013Google Scholar
  15. 15.
    H.M. Nagib and K.A. Chauhan. Variations of von Karman coefficient in canonical flows. Phys. Fluids, 20:101518–1–10, 2008Google Scholar
  16. 16.
    T.B. Nickels, Inner scaling for wall-bounded flows subject to large pressure gradients. J. Fluid Mech. 521, 217–239 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    P.E. Skare, P.A. Krogstad, A turbulent equilibrium boundary layer near separation. J. Fluid Mech. 272, 319–348 (1994)CrossRefGoogle Scholar
  18. 18.
    W. Szablewski, Turbulente Strömungen in divergenten Kanälen. Ing.-Arch. 22, 268–281 (1954)zbMATHCrossRefGoogle Scholar
  19. 19.
    T. Wei, R. Schmidt, P. McMurtry, Comment on the clauser chart method for determining the friction velocity. Exp. Fluids 38, 695–699 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tobias Knopp
    • 1
    Email author
  • Nicolas A. Buchmann
    • 2
  • Daniel Schanz
    • 1
  • Christian Cierpka
    • 2
  • Rainer Hain
    • 2
  • Andreas Schröder
    • 1
  • Christian J. Kähler
    • 2
  1. 1.Institute of Aerodynamics and Flow TechnologyDLR (German Aerospace Center)GottingenGermany
  2. 2.Institute for Fluid Mechanics and AerodynamicsUniversität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations