Advertisement

Turbulent Structure of a Concentric Annular Flow

  • Sina GhaemiEmail author
  • Majid Bizhani
  • Ergun Kuru
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 23)

Abstract

Turbulent flow in the annular gap between two concentric tubes of 38 and 95 mm diameter at Reynolds number of 79’000 is experimentally investigated. Measurements are conducted using planar particle image velocimetry (PIV) with spatial resolution of 23 \(\upmu \)m/pix and interrogation windows of 0.74 \(\times \) 0.74 mm\(^{2}\). The experiments are aimed at scrutinizing the location of the extremums of the asymmetric profiles of velocity and turbulent statistics along with the relevant turbulent structures. The location of maximum average streamwise velocity \(<\) \(U\) \(>_\mathrm{max}\) and zero Reynolds shear stress \(<\) \(uv\) \(>\) are observed to be apart. Local minimum of \(<\) \(u^{2}\) \(>\) and \(<\) \(v^{2}\) \(>\) is also observed to coincide with \(<\) \(uv\) \(>\, = 0\) and different from \(<\) \(U\) \(>_\mathrm{max}\). The experiments also demonstrate that the ejection events originating from the inner and outer walls play a dominant role in transport of turbulence toward the midsection of the annulus.

Keywords

Turbulent annular flow Reynolds stress Particle image velocimetry 

References

  1. 1.
    B.J. Boersma, W.P. Breugem, Numerical simulation of turbulent flow in concentric annuli. Flow, Turbul. Combust. 86(1), 113–127 (2011)CrossRefzbMATHGoogle Scholar
  2. 2.
    J.A. Brighton, J.B. Jones, Fully developed turbulent flow in annuli. J. Basic Eng. 86(4), 835–842 (1964)CrossRefGoogle Scholar
  3. 3.
    S.Y. Chung, H.J. Sung, Direct numerical simulation of turbulent concentric annular pipe flow: part 2: heat transfer. Int. J. Heat Fluid Flow 24(3), 399–411 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    S.Y. Chung, G.H. Rhee, H.J. Sung, Direct numerical simulation of turbulent concentric annular pipe flow: part 1: flow field. Int. J. Heat Fluid Flow 23(4), 426–440 (2002)CrossRefGoogle Scholar
  5. 5.
    S.W. Churchill, C. Chan, Turbulent flow in channels in terms of turbulent shear and normal stresses. AIChE J. 41(12), 2513–2521 (1995)CrossRefGoogle Scholar
  6. 6.
    F.E.R. Corredor, M. Bizhani, M. Ashrafuzzaman, E. Kuru, An experimental investigation of turbulent flow in concentric annulus using particle image velocimetry technique. J. Fluid Eng. 136(051203), 1–11 (2014)Google Scholar
  7. 7.
    R.B. Crookston, R.R. Rothfus, R.I. Kermode, Turbulent heat transfer in annuli with small cores. Int. J. Heat Mass Transf. 11(3), 415–426 (1968)CrossRefGoogle Scholar
  8. 8.
    S.Y. Jung, H.J. Sung, Characterization of the three-dimensional turbulent boundary layer in a concentric annulus with a rotating inner cylinder. Phys. Fluids (1994-present), 18(11), 115102 (2006)Google Scholar
  9. 9.
    M. Kaneda, B. Yu, H. Ozoe, S.W. Churchill, The characteristics of turbulent flow and convection in concentric circular annuli. Part I: flow. Int. J. Heat Mass Transf. 46(26), 5045–5057 (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    P. Kundu, I. Cohen, D. Dowling, Fluid Mechanics, 5th edn. (Elsevier Science, Amsterdam, 2012), p. 557zbMATHGoogle Scholar
  11. 11.
    C.J. Lawn, C.J. Elliott, Fully developed turbulent flow through concentric annuli. J. Mech. Eng. Sci. 14(3), 195–204 (1972)CrossRefGoogle Scholar
  12. 12.
    N.S. Liu, X.Y. Lu, Large eddy simulation of turbulent concentric annular channel flows. Int. J. Numer. Methods Fluids 45(12), 1317–1338 (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    K. Maubach, K. Rehme, Negative eddy diffusivities for asymmetric turbulent velocity profiles? Int. J. Heat Mass Transf. 15(3), 425–432 (1972)CrossRefGoogle Scholar
  14. 14.
    N. Nikitin, H. Wang, S. Chernyshenko, Turbulent flow and heat transfer in eccentric annulus. J. Fluid Mech. 638, 95–116 (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    J.M. Nouri, H. Umur, J.H. Whitelaw, Flow of Newtonian and non-Newtonian fluids in concentric and eccentric annuli. J. Fluid Mech. 253, 617–641 (1993)CrossRefGoogle Scholar
  16. 16.
    F. Ogino, T. Sakano, T. Mizushina, Momentum and heat transfers from fully developed turbulent flow in an eccentric annulus to inner and outer tube walls. Wärme-und Stoffübertragung 21(2–3), 87–93 (1987)CrossRefGoogle Scholar
  17. 17.
    A. Quarmby, An experimental study of turbulent flow through concentric annuli. Int. J. Mech. Sci. 9(4), 205–221 (1967)CrossRefGoogle Scholar
  18. 18.
    K. Rehme, Turbulent flow in smooth concentric annuli with small radius ratios. J. Fluid Mech. 64(02), 263–288 (1974)CrossRefGoogle Scholar
  19. 19.
    K. Rehme, Turbulence measurements in smooth concentric annuli with small radius ratios. J. Fluid Mech. 72(01), 189–206 (1975)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.School of Mining and Petroleum EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations