Advertisement

The Temporal Coherence of Prograde and Retrograde Spanwise Vortices in Zero-Pressure Gradient Turbulent Boundary Layers

  • Callum AtkinsonEmail author
  • Vassili Kitsios
  • Soria
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 23)

Abstract

Spatial and temporal statistics associated with spanwise aligned vortical structures are extracted from high repetition rate particle image velocimetry (HR-PIV) experimental measurements of a zero-pressure gradient turbulent boundary layer. Measurements were performed in the LTRAC water tunnel with a momentum thickness-based Reynolds number of \(\text{ Re }_\theta = 2{,}250\). Streamwise wall-normal planes of the field were recorded at rate of \(\varDelta t = 0.008\delta /U_\infty \), spanning a streamwise domain of \(3.2\delta \). This enables a single structure to be sampled approximately 400 times for a duration of 3.2\(\delta /U_\infty \) as it convects downstream. A model Oseen vortex is fit to each local peak in swirling strength, in order to detect and classify the radius, centroid velocity, circulation, and centroid location of each spanwise vortex. Attempts to track the evolution of these vortices show that on average these Oseen vortices only appear to remain temporally coherent for a time of 0.02\(\delta /U_\infty \).

Keywords

Particle Image Velocimetry Direct Numerical Simulation Direct Numerical Simulation Data Hairpin Vortex Spanwise Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by funding from the Australian Research Council.

References

  1. 1.
    J.C. del Álamo, J. Jiménez, J. Fluid Mech. 640, 5 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    C. Atkinson, N. Buchmann, O. Amili, J. Soria, in Proceedings of the 8th International Symposium Turbulence and Shear Flow Phenomena, Poitiers, France (2013)Google Scholar
  3. 3.
    F. Waleffe, J. Kim, Self-sustaining Mechanisms of Wall Turbulence (Computational Mechanics Publications, Southampton, 1997), Chap. How streamwise rolls and streaks self-sustain in a shear flow, pp. 309–332Google Scholar
  4. 4.
    W. Schoppa, F. Hussain, J. Fluid Mech. 453(1), 57 (2002)zbMATHMathSciNetGoogle Scholar
  5. 5.
    J. Zhou, R. Adrian, S. Balachandar, T. Kendall, J. Fluid Mech. 387, 353 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Adrian, Phys. Fluids 19(4), 041301 (2007)CrossRefGoogle Scholar
  7. 7.
    J. Carlier, M. Stanislas, J. Fluid Mech. 535, 143 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Y. Wu, K. Christensen, J. Fluid Mech. 568, 55 (2006)zbMATHCrossRefGoogle Scholar
  9. 9.
    B. Ganapathisubramani, E. Longmire, I. Marusic, Phys. Fluids 18, 05510501 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Das, M. Tanahashi, K. Shoji, T. Miyauchi, Theor. Comput. Fluid Dyn. 20, 55 (2006)zbMATHCrossRefGoogle Scholar
  11. 11.
    J. DelAlamo, J. Jiménez, P. Zandonade, R. Moser, J. Fluid Mech. 561, 329 (2006)CrossRefGoogle Scholar
  12. 12.
    S.J. Kang, M. Tanahashi, T. Miyauchi, J. Turbul. (8) (2007)Google Scholar
  13. 13.
    A. Lozano-Durán, J. Jiménez, in Journal of Physics: Conference Series, vol. 318 (IOP Publishing, 2011), p. 062016Google Scholar
  14. 14.
    S. Herpin, M. Stanislas, J. Soria, J. Turbul. 11 (2010)Google Scholar
  15. 15.
    J. LeHew, M. Guala, B. McKeon, Exp. Fluids 54(4), 1 (2013)CrossRefGoogle Scholar
  16. 16.
    G. Elsinga, I. Marusic, Phys. Fluids 22(1), 015102 (2010)CrossRefGoogle Scholar
  17. 17.
    C. Atkinson, S. Chumakov, I. Bermejo-Moreno, J. Soria, Phys. Fluids 24(10), 105104 (2012)CrossRefGoogle Scholar
  18. 18.
    C. Atkinson, N.A. Buchmann, O. Amili, J. Soria, Exp. Fluids 55(1), 1 (2014)CrossRefGoogle Scholar
  19. 19.
    X. Wu, P. Moin, Phys. Fluids 22 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace EngineeringMonash UniversityMelbourneAustralia
  2. 2.Department of Aeronautical EngineeringKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia

Personalised recommendations