An Attempt to Describe Reynolds Stresses of Turbulent Boundary Layer Subjected to Pressure Gradient

  • Artur DróżdżEmail author
  • Witold Elsner
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 23)


The paper is concerned with the issue of scaling of Reynolds stresses and the phenomenon of the outer peak of velocity fluctuations, which appears in adverse pressure gradient conditions. For this purpose, experimental data from favorable and adverse pressure gradient turbulent boundary layers, for Reynolds number varying from \(Re_{\theta }\approx 2300\div 6200\), have been analyzed. At pressure gradient conditions, the self-similarity cannot be obtained using the scale, which is constant across the boundary layer thickness. In this paper, we also propose a modification of the Alfredsson et al. (Eur J Mech B/Fluids 36, 167–175, 2012, [1]) expression, which is dedicated to ZPG flows. The new formulation, utilizing the shape factor H and pressure gradient parameter \(\varLambda \), allows an extension of the validity of Alfredsson et al. proposal for pressure gradient flows.


Pressure Gradient Reynolds Stress Turbulent Boundary Layer Boundary Layer Thickness High Reynolds Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The investigation was supported by National Science Centre under Grant no. DEC-2012/07/B/ST8/03791.


  1. 1.
    P.H. Alfredsson, R. Örlü, A. Segalini, A new formulation for the streamwise turbulence intensity distribution in wall-bounded turbulent flows. Eur. J. Mech. B/Fluids 36, 167–175 (2012). doi: 10.1016/j.euromechflu.2012.03.015.
  2. 2.
    L. Castillo, W.K. George, Similarity analysis for turbulent boundary layer with pressure gradient: outer flow. AIAA J. 39(1), 41–47 (2001)CrossRefGoogle Scholar
  3. 3.
    S. Drobniak, W. Elsner, A. Dróżdż, M. Materny, Experimental analysis of turbulent boundary layer with adverse pressure gradient corresponding to turbomachinery conditions, in Progress in Wall Turbulence: Understanding and Modeling, ed. by M. Stanislas, J. Jimenez, I. Marusic. ERCOFTAC Series, vol. 14. (Springer, Dordrecht, 2011), pp. 143–150. doi: 10.1007/978-90-481-9603-6.
  4. 4.
    A. Dróżdż, W. Elsner, Detection of coherent structures in a turbulent boundary layer with zero, favourable and adverse pressure gradients. J. Phys. Conf. Ser. 318(6), 062007 (2011). doi: 10.1088/1742-6596/318/6/062007
  5. 5.
    A. Dróżdż, W. Elsner, Amplitude modulated near-wall cycle in a turbulent boundary layer under an adverse pressure gradient. Arch. Mech. 65(6), 511–525 (2013)zbMATHGoogle Scholar
  6. 6.
    A. Dróżdż, W. Elsner, Comparison of single and X-wire measurements of streamwise velocity fluctuations in turbulent boundary layer. J. Theory Appl. Mech. 52(2), 499–505 (2014)Google Scholar
  7. 7.
    A. Dróżdż, W. Elsner, S. Drobniak, Application of oil-fringe interferometry for measurements of wall shear stress. Turbomachinery 133, 1–8 (2008)Google Scholar
  8. 8.
    A. Dróżdż, W. Elsner, S. Drobniak: Scaling of streamwise Reynolds stress for turbulent boundary layers with pressure gradient. Eur. J. Mech. B/Fluids (2014) (In press)Google Scholar
  9. 9.
    Z. Harun, J.P. Monty, R. Mathis, I. Marusic, Pressure gradient effects on the large-scale structure of turbulent boundary layers. J. Fluid Mech. 715, 477–498 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    N. Hutchins, T.B. Nickels, I. Marusic, M.S. Chong, Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103 (2009). doi: 10.1017/S0022112009007721.
  11. 11.
    P. Ligrani, P. Bradshaw, Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes. Exp. Fluids 5, 407–417 (1987)CrossRefGoogle Scholar
  12. 12.
    I. Marusic, G.J. Kunkel, Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys. Fluids 15(8), 2461–2465 (2003). doi: 10.1063/1.1589014 CrossRefGoogle Scholar
  13. 13.
    I. Marusic, R. Mathis, N. Hutchins, Reynolds number dependence of the amplitude modulated near-wall cycle, in Progress in Wall Turbulence: Understanding and Modeling. ERCOFTAC Series, vol. 14, ed. by M. Stanislas, J. Jimenez, I. Marusic (Springer, 2011), pp. 105–112Google Scholar
  14. 14.
    R. Mathis, N. Hutchins, I. Marusic, Evidence of large-scale amplitude modulation on the near-wall turbulence, in Australasian Fluid Mechanics Conference, December (2007), pp. 1442–1448Google Scholar
  15. 15.
    J. Monty, Z. Harun, I. Marusic, A parametric study of adverse pressure gradient turbulent boundary layers. Int. J. Heat Fluid Flow 32(3) (2011). doi: 10.1016/j.ijheatfluidflow.2011.03.004
  16. 16.
    Y. Nagano, T. Tsuji, T. Houra, Structure of turbulent boundary layer subjected to adverse pressure gradient. Int. J. Heat Fluid Flow 19(5), 563–572 (1998). doi: 10.1016/S0142-727X(98)10013-9 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Thermal MachineryCzestochowa University of TechnologyCzestochowaPoland

Personalised recommendations