Skip to main content

Nonlinear Structural Mechanics of Micro-and Nanosystems

  • Chapter
  • First Online:
Nonlinearity in Energy Harvesting Systems
  • 904 Accesses

Abstract

Recently, the use of micro- and nanoelectromechanical systems (MEMS and NEMS) has seen a dramatic increase observed especially with the increasing interest of wide spectrum of technologies such as mass/gas sensors, filters, switches, and resonators. Adding to that, their simple fabrication process makes them easy to be fabricated at a low cost and hence commercialized easily. The basic structures that are used numerously to build MEMS and NEMS devices are principally made of cantilever or clamped-clamped beams. For example, they are employed in mass sensors for bio and gas sensing, as switching elements in RF microswitches and optical fibers, and probe elements in atomic force microscope (AFM). Also, they form a basic element in nanoscale devices such as carbon nanotubes (CNTs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58.

    Article  Google Scholar 

  2. Craighead, H. G. (2000). Nanoelectromechanical systems. Science, 290, 1532–1535.

    Article  Google Scholar 

  3. Postma, H., Kozinsky, I., Husain, A., & Roukes, M. (2005). Dynamic range of nanotube- and nanowire-based electromechanical systems. Applied Physics Letters, 86, 223105(1–3).

    Google Scholar 

  4. Sazonova, V., Yaish, Y., Üstünel, H., Roundy, D., Arias, T. A., & McEuen, P. L. (2004). A tunable carbon nanotubes electromechanical oscillator. Nature, 431, 284–287.

    Article  Google Scholar 

  5. Sazonova, V. A. (2006). A tunable carbon nanotube resonator, Ph.D. Thesis, Department of Physics, Cornell University.

    Google Scholar 

  6. Üstünel, H., Roundy, D., & Arias, T. A. (2005). Modeling a suspended nanotube oscillator. Nano Letter, 5, 523–526.

    Article  Google Scholar 

  7. Gibson, R. F., Ayorinde, E. O., & Wen, Y. F. (2007). Vibrations of carbon nanotubes and their composites: A review. Composites Science and Technology, 67, 1–28.

    Article  Google Scholar 

  8. Gao, R. P., Wang, Z. L., Bai, Z. G., de Heer, W. A., Dai, L. M., & Gao, M. (2000). Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. Physical Review Letters, 85, 622–625.

    Article  Google Scholar 

  9. Wang, Z. L., Gao, R. P., Poncharal, P., de Heer, W. A., Dai, Z. R., & Pan, Z. W. (2001). Mechanical and electrostatic properties of carbon nanotubes and nanowires. Materials Science and Engineering C, 16, 3–10.

    Article  Google Scholar 

  10. Dequesnes, M., Rotkin, S. V., & Aluru, N. R. (2002). Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology, 13, 120–131.

    Article  Google Scholar 

  11. Sapmaz, S., Blanter, Y. M., Gurevich, L., & van der Zant, H. S. J. (2003). Carbon nanotubes as nanoelectromechanical systems. Physical Review B, 67, 14–2354.

    Article  Google Scholar 

  12. Dequesnes, M., Tang, S., & Aluru, N. R. (2004). Static and dynamic analysis of carbon nanotube-based switches. Journal of Engineering Materials and Technology, 126, 230–237.

    Article  Google Scholar 

  13. Lefèvre, R., Goffman, M. F., Derycke, V., Miko, C., Forró, L., Bourgoin, J. P., et al. (2005). Scaling law in carbon nanotube electromechanical devices. Physical Review Letters, 95, 55–59.

    Article  Google Scholar 

  14. Ke, C. H., & Espinosa, H. D. (2005). Numerical analysis of nanotube-based NEMS devices—Part I: Electrostatic charge distribution on multiwalled nanotubes. Journal of Applied Mechanics, 72, 721–725.

    Article  MATH  Google Scholar 

  15. Pugno, N., Ke, C. H., & Espinosa, H. D. (2005). Analysis of doubly clamped nanotube devices in the finite deformation regime. Journal of Applied Mechanics, 72, 445–449.

    Article  MATH  Google Scholar 

  16. Witkamp, B., Poot, M., & van der Zant, H. S. J. (2006). Bending-mode vibration of a suspended nanotube resonator. Nano Letter, 6, 2904–2908.

    Article  Google Scholar 

  17. Poot, M., Witkamp, B., Otte, M. A., & van der Zant, H. S. J. (2007). Modeling suspended carbon nanotube resonators. Physica Status Solidus (b), 244, 4252–4256.

    Article  Google Scholar 

  18. Peng, H. B., Chang, C. W., Aloni, S., Yuzvinsky, T. D., & Zettl, A. (2007). Microwave electromechanical resonator consisting of clamped carbon nanotubes in an abacus arrangement. Physical Review B, 76, 354–359.

    Google Scholar 

  19. Srivastava, D., & Barnard, S. T. (1997). Molecular dynamics simulation of large-scale carbon nanotubes on a shared-memory architecture. In Proceedings of the 1997 ACM/IEEE Conference on Supercomputing. San Jose, CA.

    Google Scholar 

  20. Sears, A. T. (2006). Carbon nanotube mechanics: continuum model development from molecular mechanics virtual experiments. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.

    Google Scholar 

  21. Hwang, H. J., & Lee, J. H. (2006). Molecular dynamics modeling of eectromechanical nanotube memory. Journal of the Korean Physical Society, 49(3), 1136–1142.

    MathSciNet  Google Scholar 

  22. Brodka, A., Kołoczek, J., Burian, A., Dore, J. C., Hannon, A. C., & Fonseca, A. (2006). Molecular dynamics simulation of carbon nanotube structure. Journal of Molecular Structure, 792–793, 78–81.

    Article  Google Scholar 

  23. Kang, J. W., Hwang, H. J., & Jiang, Q. (2006). A molecular dynamics study on oscillation of a carbon nanotube inside an encapsulating Boron-Nitride nanotube. Journal of Computational and Theoretical Nanoscience, 3(6), 880–884(1–5).

    Google Scholar 

  24. Kang, J. W., Kang, D. Y., Choi, Y. G., Lee, S., & Hwang, H. J. (2009). Molecular dynamics study of tunable double-walled carbon nanotube oscillator. Journal of Computational and Theoretical Nanoscience, 6(7), 1580–1584(1–5).

    Google Scholar 

  25. Kang, J. W., Won, C. S., Ryu, G. H., & Choi, Y. G. (2009). Molecular dynamics study on resonance characteristics of gigahertz carbon nanotube motor. Journal of Computational and Theoretical Nanoscience, 6(1), 178–186(1–9).

    Google Scholar 

  26. Greaney, P. A., & Grossman, J. C. (2007). Nanomechanical energy transfer and resonance effects in single-walled carbon nanotubes. Physical Review Letters, 98, 125503–125507.

    Article  Google Scholar 

  27. Lu, J.-M., Wang, Y.-C., Chang, J.-G., Su, M.-H., & Hwang, C.-C. (2008). Molecular-dynamic investigation of buckling of double-walled carbon nanotubes under uniaxial compression. Journal of the Physical Society of Japan, 77(4), 044603(1–7).

    Google Scholar 

  28. Shayan-Amin, S., Dalir, H., & Farshidianfar, A. (2009). Molecular dynamics simulation of double-walled carbon nanotube vibrations: comparison with continuum elastic theories. Journal of Mechanics, 25(4).

    Google Scholar 

  29. Wang, X. Y., & Wang, X. (2004). Numerical simulation for bending modulus of carbon nanotubes and some explanations for experiment. Composites Part B, 35, 79–86.

    Google Scholar 

  30. Lau, K. T., Chipara, M., Ling, H., & Hui, D. (2004). On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Composites Part B, 35, 95–101.

    Google Scholar 

  31. Garg, M. (2005). Mechanics of deformation of carbon nanotubes. MS thesis, Department of Mechanical Engineering, Massachuset Institute of Technology.

    Google Scholar 

  32. Yakobson, B., Brabec, C., & Bernholc, J. (1996). Nanomechanics of carbon tubes: instabilities beyond linear response. Physical Review Letters, 76, 2511–2514.

    Article  Google Scholar 

  33. Harik, V. M. (2002). Mechanics of carbon nanotubes: applicability of the continuum-beam models. Computational Materials Science, 24, 328–342.

    Article  Google Scholar 

  34. Harik, V. M. (2001). Ranges of applicability of the continuum beam model in the mechanics of carbon nanotubes and nanorods. Solid State Communication, 120, 331–335.

    Article  Google Scholar 

  35. Liu, J. Z., Zheng, Q., & Jiang, Q. (2001). Effect of a rippling mode on resonances of carbon nanotubes. Physical Review Letters, 86, 43–46.

    Article  Google Scholar 

  36. Pantano, A., Parks, D. M., & Boyce, M. C. (2004). Mechanics of deformation of single- and multi-wall carbon nanotubes. Journal of the Mechanics and Physics of Solids, 52, 789–821.

    Article  MATH  Google Scholar 

  37. Arroyo, M. (2004). Continuum mechanics and carbon nanotubes. In Proceedings of the XXI ICTAM. Warsaw, Poland.

    Google Scholar 

  38. Arroyo, M., & Belytschko, T. (2005). Continuum mechanics modeling and simulation of carbon nanotubes. Meccanica, 40(4–6), 455–469.

    Google Scholar 

  39. Wang, L., Hu, H., & Guo, W. (2010). Thermal vibration of carbon nanotubes predicted by beam models and molecular dynamics. In Proceedings of the Royal Society A, Mathematical, Physical, and Engineering Sciences, rspa.2009.0609v1-rspa20090609.

    Google Scholar 

  40. Sears, A., & Batra, R. C. (2010). Carbon nanotube mechanics: molecular simulations and continuum models for carbon nanotubes. In Virginia Space Grant Consortium 2010 Student Research Conference, Department of Engineering Science and Mechanics: Virginia Polytechnic Institute and State University Blacksburg.

    Google Scholar 

  41. Conley, W. G., Raman, A., Krousgrill, C. M., & Mohammadi, S. (2008). Nonlinear and nonplanar dynamics of suspended nanotube and nanowire resonators. Nano Letters, 8, 1590–1595.

    Article  Google Scholar 

  42. Elishakoff, I., & Pentaras, D. (2009). Fundamental natural frequencies of double-walled carbon nanotubes. Journal of Sound and Vibration, 322, 652–664.

    Article  Google Scholar 

  43. Elishakoff, I., & Pentaras, D. (2009). Natural frequencies of carbon nanotubes based on simplified Bresse-Timoshenko theory. Journal of Computational and Theoritical Nanoscience, 6, 1527–1531.

    Article  Google Scholar 

  44. Georgantzinos, S. K., Giannopoulos, G. I., & Anifantis, N. K. (2009). An efficient numerical model for vibration analysis of single-walled carbon nanotubes. Journal of Computational Mechanics, 43, 731–741.

    Article  MATH  Google Scholar 

  45. Hawwa, M. A., & Al-Qahtani, H. M. (2010). Nonlinear oscillations of a double-walled carbon nanotube. Computational Material Science, 48, 140–143.

    Article  Google Scholar 

  46. Ke, C. H., & Espinosa, H. D. (2006). In situ electron microscopy electromechanical characterization of a bistable NEMS device. Small, 2(12), 1484–1489.

    Article  Google Scholar 

  47. Ke, C. H., Espinosa, H. D., & Pugno, N. (2005). Numerical analysis of nanotube-based NEMS devices—Part II: Role of finite kinematics, stretching and charge concentrations. Journal of Applied Mechanics, 72, 726–731.

    Article  MATH  Google Scholar 

  48. Ke, C. H., Pugno, N., Peng, B., & Espinosa, H. D. (2005). Experiments and modeling of carbon nanotube-based NEMS devices. Journal of the Mechanics and Physics of solids, 53, 1314–1333.

    Article  MATH  Google Scholar 

  49. Isacsson, A., Kinaret, J. M., & Kaunisto, R. (2007) Nonlinear resonance in a three-terminal carbon nanotube resonator. Nanotechnology, 18, 95203(1–8).

    Google Scholar 

  50. Isacsson, A., & Kinaret, J. M. (2009) Parametric resonances in electrostatically interacting carbon nanotube arrays. Physical Review B, 79, 165418(1–11).

    Google Scholar 

  51. Krishnan, A., Dujardin, E., Ebbesen, T. W., Yianilos, P. N., & Treacy, M. M. J. (1998). Young’s modulus of single-walled nanotubes. Physical Review B, 58, 14013–14019.

    Article  Google Scholar 

  52. Kim, P., & Lieber, C. M. (1999). Nanotube nanotweezers. Science Magazine, 286(5447), 2148–2150.

    Google Scholar 

  53. Poncharal, P., Wang, Z. L., Ugarte, D., & de Heer, W. A. (1999). Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science, 283, 1513–1516.

    Article  Google Scholar 

  54. Babic, B., Furer, J., Sahoo, S., Farhangfar, S., & Schonenberger, C. (2003). Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes. Nano Letters, 3, 1577–1580.

    Article  Google Scholar 

  55. Dujardin, E., Derycke, V., Goffman, M. F., Lefèvre, R., & Bourgoin, J. P. (2005). Self-assembled switches based on electroactuated multiwalled nanotubes. Applied Physics Letters, 87, 1931–1938.

    Article  Google Scholar 

  56. Rabieirad, L., Kim, S., Shim, M., & Mohammadi, S. (2005). Doubly clamped single-walled carbon nanotube resonators operating in MHz frequencies. In Proceedings of 2005 5th IEEE Conference on Nanotechnology. Nagoya, Japan.

    Google Scholar 

  57. Bak, J. H., Kim, Y. D., Hong, S. S., Lee, B. Y., Lee, S. R., Jang, J. H., et al. (2008). High-frequency micromechanical resonators from aluminium-carbon nanotube nanolaminates. Nature Materials, 7, 459–463.

    Article  Google Scholar 

  58. San Paulo, A., Black, J, García-Sanchez, D., Esplandiu, M. J., Aguasca, A., Bokor, J., F. Perez-Murano, F., & Bachtold, A. (2008). Mechanical detection and mode shape imaging of vibrational modes of micro and nanomechanical resonators by dynamic force microscopy. Journal of Physics: Conference Series, 100, 052009(1–5).

    Google Scholar 

  59. Amlani, I., Lee, K. F., Deng, J., & Wong, H. S. P. (2009). Measuring frequency response of a single-walled carbon nanotube common-sourcea. IEEE Transactions on Nanotechnology, 8, 226–233.

    Article  Google Scholar 

  60. Ren, L., Pint, C. L., Booshehri, L. G., Rice, W. D., Wang, X., Hilton, D. J., et al. (2009). Carbon nanotube terahertz polarizer. Nano Letters, 9, 2610–2613.

    Article  Google Scholar 

  61. Kienle, D., & Léonard, F. (2000). Terahertz response of carbon nanotube transistors. Physical Review Letters, 103, 026601(1–4).

    Google Scholar 

  62. Lu, R. F., Lu, Y. P., Lee, S. Y., Ha, K. L., & Deng, W. Q. (2009). Terahertz response in single-walled carbon nanotube transistor: A real-time quantum dynamics simulation. Nanotechnology, 20, 505401(1–4).

    Google Scholar 

  63. Kang, J. W., Lee, J. H., Lee, H. J., & Hwang, H. J. (2005). A study on carbon nanotube bridge as a electromechanical memory device. Physica E, 27, 332–340.

    Article  Google Scholar 

  64. Garcia-Sanchez, D., San Paulo, A., Esplandiu, M. J., Perez-Murano, F., Forrò, L., Aguasca, A., & Bachtold, A. (2007). Mechanical detection of carbon nanotube resonator vibrations. Physical Review Letters, 99, 085501(1–4).

    Google Scholar 

  65. Mayoof, F. N., & Hawwa, M. A. (2009). Chaotic behavior of a curved carbon nanotube under harmonic excitation. Journal of Chaos, Solitons & Fractals, 42, 1860–1867.

    Article  Google Scholar 

  66. Meirovitch, L. (2001). Fundamentals of vibrations. New York: McGraw Hill.

    Google Scholar 

  67. Rao, S. S. (2004). Mechanical vibrations (4th ed.). New Jersey: Prentice Hall.

    Google Scholar 

  68. Dawe, D. J. (1971). The Ttransverse vibartion of shallow arches using the displacement method. International Journal of Mechanical Sciences, Pergamon Press, 13, 713–720.

    Google Scholar 

  69. Nayfeh, A. H. (2000). Nonlinear interactions. New-York, United-States: Wiley Interscience.

    MATH  Google Scholar 

  70. Itô, K. (Ed.). (1993). Methods other than difference methods. §303I in encyclopedic dictionary of mathematics (2nd ed.) (vol. 2, pp. 1139–1980). Cambridge, MA: MIT Press.

    Google Scholar 

  71. Ouakad, H. M. (2013). The response of a micro-electro-mechanical system (MEMS) cantilever-paddle gas sensor to mechanical shock loads. Journal of Vibration and Control, in press. doi:10.1177/1077546313514763.

    Google Scholar 

  72. Younis, M. I., Abdel-Rahman, E. M., & Nayfeh, A. H. (2003). A Reduced-order model for electrically actuated microbeam-based MEMS. Journal of Microelectromechanical Systems, 12, 672–680.

    Article  Google Scholar 

  73. Reddy, J. N. (2002). Energy principles and variational methods in applied mechanics. New York: Wiley and Sons.

    Google Scholar 

  74. Hayt, W. H., & Buck, J. A. (2001). Engineering electromagnetics. New York, United-States: McGraw-Hill.

    Google Scholar 

  75. Nathanson, H. C., & Wickstrom, R. A. (1965). A resonant gate silicon surface transistor with high Q bandpass properties. IEEE Applied Physics Letters, 7, 84–86.

    Article  Google Scholar 

  76. Nathanson, H. C., Newell, W. E., Wickstrom, R. A., & Davis, J. R. (1967). The Resonant gate transistor. IEEE Transactions on Electron Devices, 14, 117–133.

    Article  Google Scholar 

  77. Newell, W. (1968). Miniaturization of tuning forks. Science, 161(3848), 1320–1326.

    Article  Google Scholar 

  78. Abdel-Rahman, E. M., Younis, M. I., & Nayfeh, A. H. (2002). Characterization of the mechanical behavior of an electrically actuated microbeam. Journal of Micromechanics and Microengineering, 12, 759–766.

    Article  Google Scholar 

  79. Younis, M. I., & Nayfeh, A. H. (2003). A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dynamics, 31, 91–117.

    Article  MATH  Google Scholar 

  80. Nayfeh, A. H., & Younis, M. I. (2005). Dynamics of MEMS resonators under superharmonic and subharmonic excitations. Journal of Micromechanics and Microengineering, 15, 1840–1847.

    Article  Google Scholar 

  81. Nayfeh, A. H., Younis, M. I., & Abdel-Rahman, E. M. (2005). Reduced-order models for MEMS applications. Nonlinear Dynamics, 41, 211–236.

    Article  MathSciNet  MATH  Google Scholar 

  82. Krylov, S., & Maimon, R. (2004). Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force. Journal of Vibration and Acoustics, 126, 332–342.

    Article  Google Scholar 

  83. Elata, D., & Bamberger, H. (2006). On the dynamic pull-in of electrostatic actuators with multiple degrees of freedom and multiple voltage sources. Journal of Microelectromechanical Systems, 15, 131–140.

    Article  Google Scholar 

  84. Nayfeh, A. H., Younis, M. I., & Abdel-Rahman, E. M. (2007). Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dynamics, 48, 153–163.

    Article  MATH  Google Scholar 

  85. Thompson, J. M. T., & Stewart, H. B. (2001). Nonlinear dynamics and chaos. New York, United-States: Wiley.

    MATH  Google Scholar 

  86. Alsaleem, F. M., Younis, M. I., & Ouakad, H. M. (2009). On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. Journal of Micromechanics and Microengineering, 19(4), 045013.

    Article  Google Scholar 

  87. Wolfram, S. (2000). The Mathematica Book (Vol. 100, pp. 7237–61820). New York, NY, USA: Cambridge University Press and Wolfram Research Inc.

    Google Scholar 

  88. Noor, A. K., & Nemeth, M. P. (1980). Micropolar beam models for lattice grids with rigid joints. Computer Methods in Applied Mechanics and Engineering, 21(2), 249–263.

    Article  MATH  Google Scholar 

  89. Harris, P. J. F. (1999). Carbon nanotubes and related structures. Cambridge, MA, United-States: Cambridge University Press.

    Book  Google Scholar 

  90. Yu, M. F. (2004). Fundamental mechanical properties of carbon nanotubes: current understanding and the related experimental studies. Journal of Engineering Materials and Technology, 126, 271–278.

    Article  Google Scholar 

  91. Akita, S., Nakayama, Y., Mizooka, S., Takano, Y., Okawa, T., Miyatake, Y., et al. (2001). Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope. Applied Physics Letters, 79(11), 1691–1694.

    Article  Google Scholar 

  92. Ouakad, H. M., & Younis, M. I. (2010). The dynamic behavior of MEMS arch resonators actuated electrically. International Journal of Non-Linear Mechanics, 45(7), 704–713.

    Article  Google Scholar 

  93. Ouakad, H. M. (2014). Static response and natural frequencies of microbeams actuated by out-of-plane electrostatic fringing-fields. International Journal of Non-Linear Mechanics, 63, 39–48.

    Article  Google Scholar 

  94. Abdel-Rahman, E. M., Emam, S. A., & Nayfeh, A. H. (2003). A generalized model of electrically actuated microbeam-based MEMS devices. In Proceedings of the DETC.03 ASME 2003 Design Engineering Technical Conference and Computers and Information in Engineering Conference. Chicago, Illinois, USA.

    Google Scholar 

  95. Nayfeh, A. H., & Pai, P. F. (2004). Linear and nonlinear structural mechanics. New York, United-States: Wiley.

    Book  MATH  Google Scholar 

  96. Nayfeh, A. H., & Balachandran, B. (1995). Applied nonlinear dynamics. New York: Wiley.

    Book  MATH  Google Scholar 

  97. Kuttler, J. R., & Sigillito, V. G. (1981). On curve veering. Journal of Sound and Vibration, 75, 585–588.

    Article  Google Scholar 

  98. Perkins, N. C., & Mote, C. D, Jr. (1986). Comments on curve veering in eigenvalue problems. Journal of Sound and Vibration, 106, 451–463.

    Article  Google Scholar 

  99. Arafat, H. N., & Nayfeh, A. H. (2003). Non-linear responses of suspended cables to primary resonance excitations. Journal of Sound and Vibration, 266, 325–354.

    Article  Google Scholar 

  100. Rega, G. (2004). Nonlinear vibrations of suspended cables-Part I: Modeling and analysis. Journal of Applied Mechanics Review, 57, 443–478.

    Article  Google Scholar 

  101. Lin, J., & Parker, R. G. (2001). Natural frequency veering in planetary gears. Mechanics of Structures and Machines, 29, 411–429.

    Google Scholar 

  102. Nayfeh, A. H. (1981). Introduction to perturbation techniques. New York, United-States: Wiley Interscience.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassen M. Ouakad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ouakad, H.M. (2016). Nonlinear Structural Mechanics of Micro-and Nanosystems. In: Blokhina, E., El Aroudi, A., Alarcon, E., Galayko, D. (eds) Nonlinearity in Energy Harvesting Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-20355-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20355-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20354-6

  • Online ISBN: 978-3-319-20355-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics