Skip to main content

MEMS Technologies for Energy Harvesting

  • Chapter
  • First Online:
Nonlinearity in Energy Harvesting Systems

Abstract

The objective of this chapter is to introduce the technology of Microelectromechanical Systems, MEMS, and their application to emerging energy harvesting devices. The chapter begins with a general introduction to the most common MEMS fabrication processes. This is followed with a survey of design mechanisms implemented in MEMS energy harvesters to provide nonlinear mechanical actuations. Mechanisms to produce bistable potential will be studied, such as introducing fixed magnets, buckling of beams or using slightly slanted clamped-clamped beams. Other nonlinear mechanisms are studied such as impact energy transfer, or the design of nonlinear springs. Finally, due to their importance in the field of MEMS and their application to energy harvesters, an introduction to actuation using piezoelectric materials is given. Examples of energy harvesters found in the literature using this actuation principle are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, C. (2012). Foundations of MEMS (2nd ed.). Pearson Education.

    Google Scholar 

  2. Ghodssi, R., & Lin, P. (2012). MEMS materials and processes handbook. Springer.

    Google Scholar 

  3. Laermer, F., & Schilp, A. (1996). Method for anisotropic plasma etching of substrates. US Patent 5,498,312.

    Google Scholar 

  4. Laermer, F., & Schilp, A. (2003). Method of anisotropic etching of silicon. US Patent 6,531,068.

    Google Scholar 

  5. Chen, K. S., Ayon, A. A., Zhang, X., & Spearing, S. M. (2002). Effect of process parameters on the surface morphology and mechanical performance of silicon structures after deep reactive ion etching (DRIE). Journal of Microelectromech Systems, 11(3), 264–275.

    Article  Google Scholar 

  6. Gorreta, S., Fernandez, D., Blokhina, E., Pons-Nin, J., Jimenez, V., O’Connell, D., et al. (2012). Pulsed digital oscillators for electrostatic MEMS. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(12), 2835–2845.

    Article  MathSciNet  Google Scholar 

  7. Howe, R. T., & Muller, R. S. (1983). Polycrystalline silicon micromechanical beams. Journal of the Electrochemical Society, 130(6), 1420–1423.

    Article  Google Scholar 

  8. Bustillo, J. M., Howe, R. T., & Muller, R. S. (1998). Surface micromachining for microelectromechanical systems. Proceedings of the IEEE, 86(8), 1552–1574.

    Article  Google Scholar 

  9. http://www.memscap.com/products/mumps.

  10. http://www.mems.sandia.gov/tech-info/summitv.html.

  11. http://www.invensense.com/invensense-shuttle.

  12. https://www.teledynedalsa.com/semi/fab/services/shuttleruns.

  13. http://www.lionixbv.nl/mpw.

  14. Cowen, A., Hames, G., Glukh, K., & Hardy, B. (2013). PiezoMUMPS Design Handbook. Revision 1.2, MEMSCAP Inc.

    Google Scholar 

  15. Pons, J., Gorreta, S., Blokhina, E., O’Connell, D., Feely, O., & Domínguez, M. (2014). Design and test of resonators using piezoMUMPS technology. In Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, Cannes, France, April (pp. 227–230).

    Google Scholar 

  16. Andò, B., Baglio, S., Trigona, C., Dumas, N., Latorre, L., & Nouet, P. (2010). Nonlinear mechanism in MEMS devices for energy harvesting applications. Journal of Micromechanics and Microengineering, 20(12), 125020.

    Article  Google Scholar 

  17. Guan, S., & Nelson, B. (2006). Magnetic composite electroplating for depositing micromagnets. Journal of Microelectromechanical Systems, 15(2), 330–337.

    Article  Google Scholar 

  18. Cottone, F., Vocca, H., & Gammaitoni, L. (2009). Nonlinear energy harvesting. Physical Review Letters, 102, 080601.

    Article  Google Scholar 

  19. Ando, B., Baglio, S., L’Episcopo, G., & Trigona, C. (2012). Investigation on mechanically bistable MEMS devices for energy harvesting from vibrations. Journal of Microelectromechanical Systems, 21(4), 779–790.

    Article  Google Scholar 

  20. Myung, N. V., Park, D. Y., Yoo, B. Y., & Sumodjo, P. T. A. (2003). Development of electroplated magnetic materials for MEMS. Journal of Magnetism and Magnetic Materials, 265(2), 189–198.

    Article  Google Scholar 

  21. Han, M., Yuan, Q., Sun, X., & Zhang, H. (2014). Design and fabrication of integrated magnetic MEMS energy harvester for low frequency applications. Journal of Microelectromechanical Systems, 23(1), 204–212.

    Article  Google Scholar 

  22. Sun, X., Yuan, Q., Fang, D., & Zhang, H. (2012). Electrodeposition and characterization of CoNiMnP permanent magnet arrays for MEMS sensors and actuators. Sensors and Actuators A: Physical, 188, 190–197. Selected papers from The 16th International Conference on Solid-State Sensors, Actuators and Microsystems.

    Google Scholar 

  23. Qiu, J., Lang, J. H., & Slocum, A. H. (2004). A curved-beam bistable mechanism. Journal of Microelectromechanical Systems, 13(2), 137–146.

    Article  Google Scholar 

  24. Saif, M. T. A. (2000). On a tunable bistable MEMS-theory and experiment. Journal of Microelectromechanical Systems, 9(2), 157–170.

    Article  MathSciNet  Google Scholar 

  25. Hoffmann, M., Kopka, P., & Voges, E. (1999). All-silicon bistable micromechanical fiber switch based on advanced bulk micromachining. IEEE Journal of Selected Topics in Quantum Electronics, 5(1), 46–51.

    Article  Google Scholar 

  26. Casals-Terre, J., Fargas-Marques, A., & Shkel, A. M. (2008). Snap-action bistable micromechanisms actuated by nonlinear resonance. Journal of Microelectromechanical Systems, 17(5), 1082–1093.

    Article  Google Scholar 

  27. Park, S., & Hah, D. (2008). Pre-shaped buckled-beam actuators: Theory and experiments. Sensors and Actuators A: Physical, 148(1), 186–192.

    Article  Google Scholar 

  28. Krylov, S., Ilic, B. R., Schreiber, D., Seretensky, S., & Craighead, H. (2008). The pull-in behavior of electrostatically actuated bistable microstructures. Journal of Micromechanics and Microengineering, 18(5), 055026.

    Article  Google Scholar 

  29. Das, K., & Batra, R. C. (2009). Pull-in and snap-through instabilities in transient deformations of microelectromechanical systems. Journal of Micromechanics and Microengineering, 19(3), 035008.

    Article  Google Scholar 

  30. Marinkovic, B., & Koser, H. (2009). Smart sand—a wide bandwidth vibration energy harvesting platform. Applied Physics Letters, 94(10).

    Google Scholar 

  31. Marzencki, M., Defosseux, M., & Basrour, S. (2009). MEMS vibration energy harvesting devices with passive resonance frequency adaptation capability. Journal of Microelectromechanical Systems, 18(6), 1444–1453.

    Article  Google Scholar 

  32. Nguyen, D. S., Halvorsen, E., Jensen, G. U., & Vogl, A. (2010). Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs. Journal of Micromechanics and Microengineering, 20(12), 125009.

    Article  Google Scholar 

  33. Nguyen, D. S., & Halvorsen, E. (2011). Nonlinear springs for bandwidth-tolerant vibration energy harvesting. Journal of Microelectromechanical Systems, 20(6), 1225–1227.

    Article  Google Scholar 

  34. Elshurafa, A. M., Khirallah, K., Tawfik, H. H., Emira, A., Abdel Aziz, A. K. S., & Sedky, S. M. (2011). Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators. Journal of Microelectromechanical Systems, 20(4), 943–958.

    Google Scholar 

  35. Gabbay, L. D., & Senturia, S. D. (2000). Computer-aided generation of nonlinear reduced-order dynamic macromodels. i. non-stress-stiffened case. Journal of Microelectromechanical Systems, 9(2), 262–269.

    Article  Google Scholar 

  36. Mehner, J. E., Gabbay, L. D., & Senturia, S. D. (2000). Computer-aided generation of nonlinear reduced-order dynamic macromodels. ii. stress-stiffened case. Journal of Microelectromechanical Systems, 9(2), 270–278.

    Article  Google Scholar 

  37. Hajati, A., & Kim, S. G., (2011). Ultra-wide bandwidth piezoelectric energy harvesting. Applied Physics Letters, 99(8).

    Google Scholar 

  38. Tvedt, L. G. W., Nguyen, D. S., & Halvorsen, E. (2010). Nonlinear behavior of an electrostatic energy harvester under wide and narrowband excitation. Journal of Microelectromechanical Systems, 19(2), 305–316.

    Article  Google Scholar 

  39. Umeda, M., Nakamura, K., & Ueha, S. (1996). Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator. Japanese Journal of Applied Physics, 35(1), Part 1, No. 5B, 3267–3273.

    Google Scholar 

  40. Dominguez-Pumar, M., Pons-Nin, J., & Ricart, J. (2008). General dynamics of pulsed digital oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(7), 2038–2050.

    Article  MathSciNet  Google Scholar 

  41. Blokhina, E., Pons-Nin, J., Ricart, J., Feely, O., & Dominguez-Pumar, M. (2010). Control of MEMS vibration modes with pulsed digital oscillators part i: Theory. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1865–1878.

    Article  MathSciNet  Google Scholar 

  42. Ricart, J., Pons-Nin, J., Blokhina, E., Gorreta, S., Hernando, J., Manzaneque, T., et al. (2010). Control of MEMS vibration modes with pulsed digital oscillators part ii: Simulation and experimental results. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1879–1890.

    Article  MathSciNet  Google Scholar 

  43. Liu, H., Lee, C., Kobayashi, T., Tay, C. J., & Quan, C. (2012). Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper. Sensors and Actuators A: Physical, 186, 242–248. Selected Papers presented at Eurosensors XXV Athens, Greece, September 2011.

    Google Scholar 

  44. Liu, H., Lee, C., Kobayashi, T., Tay, C. J., & Quan, C. (2012). Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Materials and Structures, 21(3), 035005.

    Google Scholar 

  45. Liu, H., Tay, C. J., Quan, C., Kobayashi, T., & Lee, C. (2011). Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. Journal of Microelectromechanical Systems, 20(5), 1131–1142.

    Article  Google Scholar 

  46. Ma, W., Zhu, R., Rufer, L., Zohar, Y., & Wong, M. (2007). An integrated floating-electrode electric microgenerator. Journal of Microelectromechanical Systems, 16(1), 29–37.

    Article  Google Scholar 

  47. Ahmad, M. R., Khir, M. H., & Dennis, J. O. (2013). Design and modeling of the trapezoidal electrodes array for electrets energy harvester. In SPIE Defense, Security, and Sensing (p. 87280Z).

    Google Scholar 

  48. Suzuki, Y., Edamoto, M., Kasagi, N., Kashiwagi, K., Morizawa, Y., Yokoyama, T., et al. (2008). Micro electret energy harvesting device with analogue impedance conversion circuit. PowerMEMS, 2008, 7–10.

    Google Scholar 

  49. Basset, P., Galayko, D., Paracha, A. M., Marty, F., Dudka, A., & Bourouina, T. (2009). A batch-fabricated and electret-free silicon electrostatic vibration energy harvester. Journal of Micromechanics and Microengineering, 19(11), 115025.

    Article  Google Scholar 

  50. Suzuki, Y. (2011). Recent progress in MEMS electret generator for energy harvesting. IEEE Transactions on Electrical and Electronic Engineering, 6(2), 101–111.

    Article  Google Scholar 

  51. Takamatsu, T. (1991). Life time of thermal electrets of carnauba wax, esters, fatty acids and alcohols. In 7th International Symposium on Electrets, (pp. 106–110).

    Google Scholar 

  52. Minami, T., Utsubo, T., Yamatani, T., Miyata, T., & Ohbayashi, Y. (2003). SiO2 electret thin films prepared by various deposition methods. Thin Solid Films, 426(1–2), 47–52.

    Article  Google Scholar 

  53. Sakane, Y., Suzuki, Y., & Kasagi, N. (2008). The development of a high-performance perfluorinated polymer electret and its application to micro power generation. Journal of Micromechanics and Microengineering, 18(10), 104011.

    Article  Google Scholar 

  54. Nimo, A., Mescheder, U., Müller, B., & Elkeir, A. S. A. (2011). 3D capacitive vibrational micro harvester using isotropic charging of electrets deposited on vertical sidewalls. In SPIE Microtechnologies. International Society for Optics and Photonics (p. 80661Q).

    Google Scholar 

  55. Mescheder, U., Müller, B., Baborie, S., & Urbanovic, P. (2009). Properties of SiO2 electret films charged by ion implantation for MEMS-based energy harvesting systems. Journal of Micromechanics and Microengineering, 19(9), 094003.

    Article  Google Scholar 

  56. Mescheder, U., Nimo, A., Müller, B., & Elkeir, A. (2012). Micro harvester using isotropic charging of electrets deposited on vertical sidewalls for conversion of 3D vibrational energy. Microsystem Technologies, 18(7–8), 931–943.

    Article  Google Scholar 

  57. Westby, E. R., & Halvorsen, E. (2012). Design and modelling of a patterned-electret-based energy harvester for tire pressure monitoring systems. IEEE/ASME Transactions on Mechatronics, 17(5), 995–1005.

    Article  Google Scholar 

  58. Yamashita, K., Honzumi, M., Hagiwara, K., Iguchi, Y., & Suzuki, Y. (2010) Vibration-driven MEMS energy harvester with vertical electrets. In textitProceedings of PowerMEMS, (pp. 165–168).

    Google Scholar 

  59. Wang, F., & Hansen, O. (2014). Electrostatic energy harvesting device with out-of-the-plane gap closing scheme. Sensors and Actuators A: Physical.

    Google Scholar 

  60. Liu, H., How Koh, K., & Lee, C. (2014). Ultra-wide frequency broadening mechanism for micro-scale electromagnetic energy harvester. Applied Physics Letters, 104(5).

    Google Scholar 

  61. Marin, A., Bressers, S., & Priya, S. (2011). Multiple cell configuration electromagnetic vibration energy harvester. Journal of Physics D: Applied Physics, 44(29), 295501.

    Article  Google Scholar 

  62. Cook-Chennault, K. A., Thambi, N., & Sastry, A. M. (2008). Powering MEMS portable devices –a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Materials and Structures, 17(4), 043001.

    Article  Google Scholar 

  63. Morimoto, K., Kanno, I., Wasa, K., & Kotera, H. (2010). High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sensors and Actuators A: Physical, 163(1), 428–432.

    Article  Google Scholar 

  64. Beeby, S. P., Tudor, M., & White, N. (2006). Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17(12), R175–R195.

    Article  Google Scholar 

  65. Kim, S. G., Priya, S., & Kanno, I. (2012). Piezoelectric MEMS for energy harvesting. MRS Bulletin, 37, 1039–1050.

    Article  Google Scholar 

  66. Jeon, Y. B., Sood, R., Jeong, J. H., & Kim, S. G. (2005). MEMS power generator with transverse mode thin film PZT. Sensors and Actuators A: Physical, 122(1), 16–22.

    Article  Google Scholar 

  67. Curie, J., & Curie, P. (1880). Développement, par pression, de l’électricité polaire dans les cristaux hémiédres à faces inclinées. Comptes Rendus des Séances de l’Academie des Sciencies, 91, 294–295.

    Google Scholar 

  68. Curie, J., Curie, J. P., & Curie, P. (1880). Sur l’électricité polaire dans les cristaux hémiedres à faces inclinées. Comptes Rendus des Séances de l’Academie des Sciencies, 91, 383–386.

    Google Scholar 

  69. Lippmann, G. (1881). Principe de la conservation de l’électricité, ou second principe de la théorie des phénoménes électriques. Journal of Theoretical and Applied Physics, 10(1), 381–394.

    Article  Google Scholar 

  70. IEEE standard on piezoelectricity. (1988). ANSI/IEEE Std 176-1987, pp. 1–66.

    Google Scholar 

  71. Ensminger, D., & Stulen, F. B. (2008). Ultrasonics: data, equations and their practical uses. Taylor & Francis.

    Google Scholar 

  72. Bowen, C. R., Kim, H. A., Weaver, P. M., & Dunn, S. (2014). Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy & Environmental Science, 7, 25–44.

    Article  Google Scholar 

  73. Haertling, G. H. (1999). Ferroelectric ceramics: History and technology. Journal of the American Ceramic Society, 82, 797–818.

    Article  Google Scholar 

  74. Beeby, S., & White, N. (2010). Energy Harvesting for Autonomous Systems, Artech House series smart materials, structures, and systems. Artech House, Incorporated.

    Google Scholar 

  75. Jaffe, B., Roth, R. S., & Marzullo, S. (1954). Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. Journal of Applied Physics, 25(6).

    Google Scholar 

  76. Trolier-McKinstry, S., & Muralt, P. (2004). Thin film piezoelectrics for MEMS. Journal of Electroceramics, 12(1–2), 7–17.

    Article  Google Scholar 

  77. Lovinger, A. J. (1983). Ferroelectric polymers. Science, 220(4602), 1115–1121.

    Article  Google Scholar 

  78. Baudry, H. (2013). Screen printing piezoelectric devices. Microelectronics International, 4(3), 71–74.

    Article  Google Scholar 

  79. Dietze, M., & Es-Souni, M. (2008). Structural and functional properties of screen-printed PZTPVDF-TrFE composites. Sensors and Actuators A: Physical, 143(2), 329–334.

    Article  Google Scholar 

  80. Fu, D. W., Zhang, W., Cai, H., Ge, J., Zhang, Y., & Xiong, R. (2011). Diisopropylammonium chloride: A ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization. Advanced Materials, 23(47), 5658–5662.

    Article  Google Scholar 

  81. Fu, D. W., Cai, H. L., Liu, Y., Ye, Q., Zhang, W., Zhang, Y., et al. (2013). Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal. Science, 339(6118), 425–428.

    Article  Google Scholar 

  82. Maas, R., Koch, M., Harris, N. R., White, N. M., & Evans, A. G. R. (1997). Thick-film printing of PZT onto silicon. Materials Letters, 31(1–2), 109–112.

    Article  Google Scholar 

  83. Van Schaijk, R., Elfrink, R., Kamel, T. M., & Goedbloed, M. (2008). Piezoelectric aln energy harvesters for wireless autonomous transducer solutions. In Sensors, 2008 IEEE (pp. 45–48).

    Google Scholar 

  84. Guy, I. L., Muensit, S., & Goldys, E. M. (1999). Extensional piezoelectric coefficients of gallium nitride and aluminium nitride. Applied Physics Letters, 75(26), 4133–4135.

    Article  Google Scholar 

  85. Tadigadapa, S., & Mateti, K. (2009). Piezoelectric MEMS sensors: state-of-the-art and perspectives. Measurement Science and Technology, 20(9), 092001.

    Article  Google Scholar 

  86. Crisler, D. F., Cupal, J. J., & Moore, A. R. (1968). Dielectric, piezoelectric, and electromechanical coupling constants of zinc oxide crystals. Proceedings of the IEEE, 56(2), 225–226.

    Article  Google Scholar 

  87. Park, J. C., Park, J. Y., & Lee, Y. (2010). Modeling and characterization of piezoelectric d33-mode MEMS energy harvester. Journal of Microelectromechanical Systems, 19(5), 1215–1222.

    Article  Google Scholar 

  88. Cho, J., Anderson, M., Richards, R., Bahr, D., & Richards, C. (2005). Optimization of electromechanical coupling for a thin-film PZT membrane: I. modeling. Journal of Micromechanics and Microengineering, 15(10), 1797.

    Article  Google Scholar 

  89. Kim, S. B., Park, H., Kim, S. H., Wikle, H. C., Park, J. H., & Kim, D. J. (2013). Comparison of MEMS PZT cantilevers based on d31 and d33 modes for vibration energy harvesting. Journal of Microelectromechanical Systems, 22(1), 26–33.

    Article  Google Scholar 

  90. Erturk, A., & Inman, D. J. (2011). Piezoelectric energy harvesting. John Wiley & Sons.

    Google Scholar 

  91. Xu, R., Lei, A., Dahl-Petersen, C., Hansen, K., Guizzetti, M., Birkelund, M., Thomsen, E., et al. (2012). Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters. Journal of Micromechanics and Microengineering, 22(9).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Domínguez-Pumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Domínguez-Pumar, M., Pons-Nin, J., Chávez-Domínguez, J.A. (2016). MEMS Technologies for Energy Harvesting. In: Blokhina, E., El Aroudi, A., Alarcon, E., Galayko, D. (eds) Nonlinearity in Energy Harvesting Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-20355-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20355-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20354-6

  • Online ISBN: 978-3-319-20355-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics