Skip to main content

Reconstruction of the Surface Heat Flux for a Quasi-linear System of the Hyperbolic Type Heat-Conduction Equations

  • Conference paper
  • First Online:
Book cover Optimization in the Natural Sciences (EmC-ONS 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 499))

Included in the following conference series:

  • 328 Accesses

Abstract

The problem of the identification of the surface heat flux for a quasi-linear system of the hyperbolic type heat-conduction equations is studied. An approach is proposed based on the stage-by-stage suboptimal optimization of the cost functional and input data filtering using the HuberTikhonov functional. Results are presented for the numerical modeling of the identification problem in conditions of both standard noisy data and noise emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck, J.V., Blackwell, B., St. Clair Jr., C.R.: Inverse Heat Conduction: Ill-Posed Problems. Wiley, New York (1985)

    MATH  Google Scholar 

  2. Ozisik, M.N., Orlande, H.R.B.: Inverse Heat Transfer: Fundamentals and Applications. Tailor and Francis, New York (2000)

    Google Scholar 

  3. Alifanov, O.M.: Inverse Heat Transfer Problems. Springer Verlag, Berlin (1994)

    Book  MATH  Google Scholar 

  4. Murio, D.A.: The Mollification Method and the Numerical Solution of Ill-Posed Problems. Wiley, New York (1993)

    Book  Google Scholar 

  5. Woodbury, K.A., Beck, J.V.: Estimation metrics and optimal regularization in a Tikhonov digital filter for the inverse heat conduction problem. Int. J. Heat Mass Transf. 62, 31–39 (2013)

    Article  Google Scholar 

  6. Jarny, Y., Orlande, H.R.B.: Adjoint methods. In: Orlande, H.R.B., Fudym, O., Maillet, D., Cotta, R.M. (eds.) Thermal Measurements and Inverse Techniques. CRC Press, Boca Raton (2011)

    Google Scholar 

  7. Borukhov, V.T.: Reconstruction of heat fluxes through differential temperature measurement by the method of inverse dynamic systems. J. Eng. Phys. Thermophys. 47(3), 1098–1102 (1984)

    Article  MathSciNet  Google Scholar 

  8. Lee, H.-L., Chang, W.-J., Wu, S.-C., Yang, Y.-C.: An inverse problem in estimatingthe base heat flux of an annular fin based on the hyperbolic model of heat conduction. Int. Commun. Heat Mass Transf. 44, 31–37 (2013)

    Article  Google Scholar 

  9. Christov, C.I., Jordan, P.M.: Heat conduction paradox involving second sound propagation in moving media. Phys. Rev. Lett. 94(15), 154301 (2005)

    Article  Google Scholar 

  10. Papanicolaou, N.C., Christov, C.I., Jordan, P.M.: The influence of thermal relaxation on the oscillatory properties of two-gradient convection in a vertical slot. Eur. J. Mech. B. Fluids 30, 68–75 (2011)

    Article  MATH  Google Scholar 

  11. Vernotte, P.: Paradoxes in the continuous theory of the heat equation. Compt. Rend. Acad. Sci. (Paris) 246, 3154–3155 (1958)

    MathSciNet  Google Scholar 

  12. Cattaneo, C.: A form of heat conduction which eliminates the paradox of instantaneous propagation. Compt. Rend. Acad. Sci. (Paris) 247, 431–433 (1958)

    MathSciNet  Google Scholar 

  13. Luikov, A.V., Bubnov, V.A., Soloview, I.A.: On the wave solutions of heat conduction equation. Int. J. Heat Mass Transf. 19, 245–248 (1976)

    Article  Google Scholar 

  14. Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)

    Article  Google Scholar 

  15. Ván, P., Czél, B., Fülöp, T., Gyenis, G., Gróf, Á., Verha, J.: Experimenal aspects of heat conduction beyond Fourier. Thesis, 12th Joint European Thermodynamics Conference, Brescia (2013)

    Google Scholar 

  16. Zubair, S.M., Chaudhry, M.A.: Int. J. Heat Mass Transf. 39(14), 3067–3074 (1996)

    Google Scholar 

  17. Borukhov, V.T., Kostyukova, O.I., Kurdina, M.A.: Tracking of the preset program of weighted temperatures and reconstruction of heat transfer coefficients. J. Eng. Phys. Thermophys. 83(3), 622–631 (2010)

    Article  Google Scholar 

  18. Borukhov, V.T., Kostyukova, O.I.: Identification of timedependent coefficients of heat transfer by the method of suboptimal stagebystage optimization. Int. J. Heat Mass Transf. 59, 286–294 (2013)

    Article  Google Scholar 

  19. Borukhov, V.T., Kostyukova, O.I.: Reconstruction of Heat Transfer Coefficients Using the Approach of Stage by Stage Suboptimal Optimization and Huber. Tikhonov Filtering of Input Data. Autom. Control Comput. Sci. 47(6), 289–299 (2013)

    Article  Google Scholar 

  20. Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer-Verlag, Heidelberg (1984)

    Book  Google Scholar 

  21. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. V.H. Winston & Sons, Washington, D.C. (1977)

    MATH  Google Scholar 

  22. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964)

    Article  MATH  Google Scholar 

  23. Huber, P.J., Ronchetti, E.M.: Robust Statistics, 2nd edn. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  24. Petrus, P.: Robust Huber adaptive filter. IEEE Trans. Signal Process. 47(4), 1129–1133 (1999)

    Article  Google Scholar 

  25. Binder, T., Kostina, E.: GaussNewton methods for robust parameter estimation. In: Bock, H.G., Carraro, T., Jäger, W., Körkel, S., Rannacher, R., Schlöder, J.P. (eds.) Model Based Parameter Estimation, vol. 4, pp. 55–87. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Alifanov, O.M.: Identifikatsiya protsessov teploobmena letatelnykh apparatov (vvedenie v teoriyu obratnykh zadach) (Identification of Heat Transfer Processes of Aircrafts (Introduction to the Theory of Inverse Problems)). Mashinostroenie, Moscow (1979)

    Google Scholar 

  27. Malanowski, K., Maurer, H.: Sensitivity analysis of optimal control problems subject to higher order state constraints. Ann. Oper. Res. 101, 43–73 (2001). (Optimization with Data Perturbations II)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Kostyukova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Borukhov, V., Kostyukova, O. (2015). Reconstruction of the Surface Heat Flux for a Quasi-linear System of the Hyperbolic Type Heat-Conduction Equations. In: Plakhov, A., Tchemisova, T., Freitas, A. (eds) Optimization in the Natural Sciences. EmC-ONS 2014. Communications in Computer and Information Science, vol 499. Springer, Cham. https://doi.org/10.1007/978-3-319-20352-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20352-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20351-5

  • Online ISBN: 978-3-319-20352-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics