Advertisement

Liquid Crystals as Effective Drugs for Treatment of Articular Disorders and Similar Pathologies

  • Sergey ErmakovEmail author
  • Alexandr Beletskii
  • Oleg Eismont
  • Vladimir Nikolaev
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

The problem of treatment of rheumatic diseases has pronounced medicosocial significance. It is certain that similarity of the tribological, rheological and structural properties of artificial lubricants with the natural synovial fluid is the most essential provision of successful replacement of the fluid in case of joint pathologies. The results of structural, rheological and tribological researches on the creation of artificial synovial liquids which contain cholesteric liquid crystals typical to natural synovial liquids have been described. The experimental data on high chondroprotective efficiency of preparation, checked on osteoarthritis models and during clinical approval, are proof that liquid crystals play an essential role in intraarticular friction decrease. It can be a real prerequisite for development of new pharmaceuticals for cartilage mechanodestruction prophylaxis and therapy during arthropathies.

Keywords

Synovial Fluid Rheumatic Disease Chondroitin Sulfate Cartilage Matrix Adjuvant Arthritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Symmons, S. Sand, The language of rheumatology II. Classification and grouping. Ann. Rheum. Dis. 55, 83–86 (1996)CrossRefGoogle Scholar
  2. 2.
    D.T. Felson, Epidemiology of the rheumatic diseases, in Arthritis and Allied Conditions. A Textbook of Rheumatology, ed. by W.J. Koopman (Williams & Wilkins, Baltimore, 1997), pp. 3–34Google Scholar
  3. 3.
    B. Swoboda, Aspekte der Epidemiologischen Arthroseforschung. Orthopäde 30, 834–840 (2001)CrossRefGoogle Scholar
  4. 4.
    W. Mau, M. Bornmann, H. Weber et al., Prediction of permanent work disability in a follow-up study of rheumatoid arthritis: results of tree structured analysis using RECPAM. Br. J. Rheumatol. 35, 652–659 (1996)CrossRefGoogle Scholar
  5. 5.
    E. Fex, B.-M. Larsson, K. Nived, K. Eberhardt, Effects of rheumatoid arthritis in patients followed 8 years from onset. J. Rheumatol. 25, 44–50 (1998)Google Scholar
  6. 6.
    H. Zeidler, J. Zacher, F. Hiepe (Hrsg), Interdisziplinäre klinische Rheumatologie (Springer, Berlin, Heidel-berg, New York, 2001), p. 1254Google Scholar
  7. 7.
    F. Hartmann, A. Wittenborg, H. Zeidler, in Klinische Rheumatologie. Teil I. Allgemeine Grundlagen, ed. by H.E. Bock (Klinik der Gegenwart, Band XII, München Wien Baltimore Urban & Schwarzenberg, 1987), p. 751Google Scholar
  8. 8.
    V.C. Mow, A. Ratcliffe, S.L.-Y. Woo (eds.), Biomechanics of Diarthrodial Joints (Springer, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, 1990), p. 451Google Scholar
  9. 9.
    D.R. Eyre, Collagen structure and function in articular cartilage: metabolic changes in the development of osteoarthritis, in Osteoarthritic Disorders, ed. by K.E. Kuettner, V.M. Goldberg (The American Academy of Orthopaedic Surgeons, Rosemont, 1995), pp. 219–229Google Scholar
  10. 10.
    J.A. Martin, J.A. Buckwalter, Articular cartilage aging and degeneration. Sports Med. Arthrosc. Rev. 4, 263–275 (1996)CrossRefGoogle Scholar
  11. 11.
    J.A. Buckwalter, H.J. Mankin, Articular cartilage. Part II. Degeneration and osteoarthrosis, repair, regeneration and transplantation. J. Bone Joint Surg. 79A, 612–632 (1997)Google Scholar
  12. 12.
    J.-Y. Reginster, J.-P. Pelletier, J. Martel-Pelletier, Y. Hentorin (eds.), Osteoarthritis: Clinical and Experimental Aspects (Springer, Berlin, Heidel-berg, New York, 1999), p. 521Google Scholar
  13. 13.
    A.R. Poole, Imbalances of anabolism and catabolism of cartilage matrix components in osteoarthritis, in Osteoarthritic Disorders, ed. by K.E. Kuettner, V.M. Goldberg (The American Academy of Orthopaedic Surgeons, Rosemont, 1995), pp. 247–260Google Scholar
  14. 14.
    L.J. Sandell, Molecular biology of collagens in normal and osteoarthritic cartilage, in Osteoarthritic Disorders, ed. by K.E. Kuettner, V.M. Goldberg (The American Academy of Orthopaedic Surgeons, Rosemont, 1995), pp. 131–146Google Scholar
  15. 15.
    J.P. Fulkerson, C.C. Edwards, O.D. Chrisman, Articular cartilage. Chapter 12, in The Scientific Basis of Orthopaedics, 2nd edn. (Los Altos, 1987), pp. 347–371Google Scholar
  16. 16.
    A.L. Schiller, Pathology of osteoarthritis, in Osteoarthritic Disorders, ed. by K.E. Kuettner, V.M. Goldberg (The American Academy of Orthopaedic Surgeons, Rosemont, 1995), pp. 95–101Google Scholar
  17. 17.
    V. Roth, V.C. Mow, D.R. Lai et al., Correlation of intrinsic compressive properties of bovine articular cartilage with its uronic acid water content. Proc. Orth. Res. Soc. 6, 49–57 (1981)CrossRefGoogle Scholar
  18. 18.
    J.M. Stuart, A.S. Townes, A.H. Kang, The role of collagen autoimmunity in animal models and human diseases. J. Invest. Derm. 79(Suppl. 1), 121–127 (1982)CrossRefGoogle Scholar
  19. 19.
    A. Unsworth, D. Dowson, V. Wright, Some new evidence of human joint lubrication. Ann. Rheum. Dis. 34, 277–281 (1975)CrossRefGoogle Scholar
  20. 20.
    J.H. Talbott, R.D. Altman, N.L. Gottlieb, D.S. Howell, Chondroprotection. Sem. Arthritis Rheum. 17(2), 1–2 (1987)Google Scholar
  21. 21.
    E. Schacht, Chondroprotection—a perspective. EULAR Bull. 15(4), 128–132 (1986)Google Scholar
  22. 22.
    J. Steinmeyer, Medikamentöse Therapie der Arthrose. Orthopäde 30, 856–865 (2001)CrossRefGoogle Scholar
  23. 23.
    S.S. Leopold, B.B. Redd, W.J. Warme et al., Corticosteroid compared with hyaluronic acid injections for the treatment of osteoarthritis of the knee. J. Bone Joint Surg. 85A, 1197–1203 (2003)Google Scholar
  24. 24.
    M. Annefeld, Ultrastructural and morphometrical studies on the articular cartilage of rats: the destructive effect of dexamethasone and the chondroprotective effect of rumalon. Agents Actions 17(3/4), 320–321 (1985)Google Scholar
  25. 25.
    S.A. Jimenez, Biochemical aspects of repair and its cellular control, in Osteoarthritis: A Suitable Case for Treatment: Proc. of the Symp. Held at the XI Europ. Congr. of Rheumatology in Athens, July 1987 (EULAR Publishers, Basel, Schweiz, 1988), pp. 19–24Google Scholar
  26. 26.
    M. Haataja, I.E. Fraki, E. Vainio, Effect of antirheumatic drugs on proteinases in synovial fluid of patients with rheumatoid arthritis. Int. J. Clin. Pharmac. Biopharm. 16(9), 417–419 (1979)Google Scholar
  27. 27.
    G.F.B. Birdwood, J.V. Gantmacher, Further experience SEAPAL Congr. of Rheumatology, Bangkok (Hans Huber Publishers, Berne, Stuttgart, Vien, 1984), pp. 72–73Google Scholar
  28. 28.
    J.H. Herman, E.V. Hess, Nonsteroidal anti-inflammatory drugs and modulation of cartilaginous changes in osteoarthritis and rheumatoid arthritis. Am. J. Med. 77(4b), 16–25 (1984)CrossRefGoogle Scholar
  29. 29.
    M. Bouakka, G. Loyau, J. Bocquet, Effect of a glycosaminoglycanpeptid complex (GP-C) on the biosynthesis of proteoglycans in articular chondrocytes treated with Interleukin-1. Curr. Therap. Res. 43(4), 588–589 (1988)Google Scholar
  30. 30.
    V. Rejholec, Long-term studies of antiosteoarthritic drugs: an assessment. Sem. Arthritis Rheum. 17(Suppl. 1), 35–53 (1987)Google Scholar
  31. 31.
    C. Bassleer, P. Gysen, R. Bassleer et al., Effects of peptidic glicoaminoglycans complex on human chondrocytes cultivated in three dimensions. Biochem. Pharvacol. 37(10), 1939–1945 (1988)CrossRefGoogle Scholar
  32. 32.
    P.G. Bulloough, Cartilage repair osteoarthritis, in Osteoarthritis: A Suitable Case for Treatment: Proceedings of a Symposium held at the XI Europ. Congr. of Rheumatology in Athens, July 1987 (EULAR Publishers, Basel, Schweiz, 1988), pp. 13–18Google Scholar
  33. 33.
    J.P. Bali, H. Cousse, E. Neuzil, Biochemical basis of the pharmacological action of chondroitin sulfates on the osteoarticular system. Sem. Arthritis Rheum. 31, 58–68 (2001)CrossRefGoogle Scholar
  34. 34.
    K. Sugahara, H. Kitagawa, Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr. Opin. Struct. Biol. 10, 518–527 (2000)CrossRefGoogle Scholar
  35. 35.
    F. Ronca, L. Palmieri, P. Panicucci et al., Anti-inflammatory activity of chondroitin sulfate. Osteoarthr. Cartil. 6(A), 14–21 (1998)CrossRefGoogle Scholar
  36. 36.
    G.C. De los Reyes, R.T. Koda, E.J. Lien, Glucosamine and chondroitin sulfates in the treatment of osteoarthritis. Survey. Prog. Drug. Res. 55, 81–103 (2000)Google Scholar
  37. 37.
    A. Conte, N. Volpi, L. Palmieri et al., Biochemical and pharmacokinetic aspects of oral treatment with chondroitin sulfate. Arzneimittel-Forsch 45, 918–925 (1995)Google Scholar
  38. 38.
    A. Adebowale, J. Du, Z. Liang et al., The bioavailability and pharmacokinetics of glucosamine hydrochloride and low molecular weight chondroitin sulfate after single and multiple doses to beagle dogs. Biopharm. Drug. Dispos. 23, 217–225 (2002)CrossRefGoogle Scholar
  39. 39.
    N. Volpi, Oral bioavailability of chondroitin sulfate (chondrosulfate (R)) and its constituents in healthy male volunteers. Osteoarthr. Cartilage 10, 768–771 (2002)CrossRefGoogle Scholar
  40. 40.
    F. Richy, O. Bruyere, O. Ethgen et al., Structural and symptomatic efficacy of glucosamine and chondroitin in knee osteoarthritis: a comprehensive meta-analysis. Arch. Intern. Med. Jul. 163(13), 1514–1522 (2003)CrossRefGoogle Scholar
  41. 41.
    T.E. McAlindon, M.P. LaValley, J. Gulin et al., Glucosamine and chondroitin for treatment of osteoarthritis. A systematic quality assessment and meta-analysis. JAMA 283(11), 1469–1475 (2000)CrossRefGoogle Scholar
  42. 42.
    B.F. Leeb, H. Schweitzer, K. Montag, J.S. Smolen, A meta-analysis of chondroitin sulfate in the treatment of osteoarthritis. J. Rheumatol. 27(1), 205–211 (2000)Google Scholar
  43. 43.
    P.M. van der Kraan, B.J. de Vries, E.L. Vitters et al., The effect of low sulfate concentrations on the glycosaminoglycan synthesis in anatomically intact articular cartilage of the mouse. J. Orthop. Res. 7(5), 645–653 (1989)CrossRefGoogle Scholar
  44. 44.
    P.M. van der Kraan, E.L. Vitters, B.J. de Vries et al., High susceptibility of human articular cartilage glycosaminoglycan synthesis to changes in inorganic sulfate availability. Orthop. Res. Jul. 8(4), 565–571 (1990)CrossRefGoogle Scholar
  45. 45.
    E.D. Schleicher, C. Weigert, Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Kidney Int. 58(Suppl. 77), 8–13 (2000)Google Scholar
  46. 46.
    D.R. Runkel, M.J. Cupp, Glucosamine sulfate use in osteoarthritis. Am. J. Health Syst. Pharm. 56(3), 267–269 (1999)Google Scholar
  47. 47.
    T.R. Oegema Jr, L.B. Deloria, J.D. Sandy et al., Effect of oral glucosamine on cartilage and meniscus in normal and chymopapain-injected knees of young rabbits. Arthritis Rheum. 46, 2495–2503 (2002)CrossRefGoogle Scholar
  48. 48.
    R.A. Windhaber, R.J. Wilkins, D. Meredith, Functional characterization of glucose transport in bovine articular chondrocytes. Pflugers Arch. 446(5), 572–577 (2003)CrossRefGoogle Scholar
  49. 49.
    L. Ma, W.A. Rudert, J. Harnaha et al., Immunosuppressive effects of glucosamine. J. Biol. Chem. 277(42), 39343–39349 (2002)CrossRefGoogle Scholar
  50. 50.
    J. Hua, K. Sakamoto, I. Nagaoka, Inhibitory actions of glucosamine, a therapeutic agent for osteoarthritis on the functions of neutrophils. J. Leukoc. Biol. 71(4), 632–640 (2002)Google Scholar
  51. 51.
    I. Setnikar, L.C. Rovati, Absorption, distribution, metabolism and excretion of glucosamine sulfate. Rev. Arzneimittel-Forsch 51, 699–725 (2001)Google Scholar
  52. 52.
    A. Almada, P. Harvey, K. Platt, Effects of chronic oral glucosamine sulfate on fasting insulin resistance index (FIRI) in non-diabetic individuals. FASEB J. 14(4), A750–A751 (2000)Google Scholar
  53. 53.
    J.G. Yu, S.M. Boies, J.M. Olefsky, The effect of oral glucosamine sulfate on insulin sensitivity in human subjects. Diabetes Care 26, 1941–1942 (2003)CrossRefGoogle Scholar
  54. 54.
    T.E. Towheed, M.C. Hochberg, A systematic review of randomized controlled trials of pharmacological therapy in osteoarthritis of the knee with an emphasis on trial methodology. Sem. Arthritis Rheum. 26(5), 755–770 (1997)CrossRefGoogle Scholar
  55. 55.
    T.S. Barclay, C. Tsourounis, G.M. McCart, Glucosamine. Ann. Pharmacother. 32(5), 574–579 (1998)CrossRefGoogle Scholar
  56. 56.
    S.B. Kayne, K. Wadeson, A. MacAdam, Is glucosamine an effective treatment for osteoarthritis? A meta-analysis. Pharm. J. 265, 759–763 (2000)Google Scholar
  57. 57.
    J.Y. Reginster, R. Deroisy, L.C. Rovati et al., Long-term effects of glucosamine sulfate on osteoarthritis progression: a randomized, placebo-controlled clinical trial. Lancet 357, 251–256 (2001)CrossRefGoogle Scholar
  58. 58.
    K. Pavelka, J. Gatterova, M. Olejarova et al., Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3 year, randomized, placebo-controlled, double-blind study. Arch. Int. Med. 162(18), 2113–2123 (2002)CrossRefGoogle Scholar
  59. 59.
    O. Bruyere, A. Honore, O. Ethgen et al., Correlation between radiographic severity of knee osteoarthritis and future disease progression. results from a 3-year prospective, placebo-controlled study evaluating the effect of glucosamine sulfate. Osteoarthr. Cartilage 11, 1–5 (2003)CrossRefGoogle Scholar
  60. 60.
    O. Bruyre, K. Pavelka, L.C. Rovati et al., Glucosamine sulfate reduces osteoarthritis progression in postmenopausal women with knee osteoarthritis: evidence from two 3-year studies. Menopause 11(2), 138–143 (2004)CrossRefGoogle Scholar
  61. 61.
    J. Cibere, J.A. Kopec, A. Thorne et al., Randomize, double-blind, placebo-controlled glucosamine discontinuation trial in knee osteoarthritis. Arthritis Rheum. (Arthritis Care Res.) 51(5), 738–745 (2004)CrossRefGoogle Scholar
  62. 62.
    N. Gschwend, Surgical Treatment of Rheumatoid Arthritis (George Thieme Verlag, Stuttgart, New York, 1980), p. 310Google Scholar
  63. 63.
    R. Bauer, F. Kerschbaumer, Comparative follow-up of synovectome and synoviorthesis, in 10-th European Congress of Rheumatology (Abstr., Moscow, 1983), pp. 242–243Google Scholar
  64. 64.
    F. Kerschbaumer, R. Bauer, Side effects of radiosynoviorthesis of the knee joint, in 10-th European Congress of Rheumatology (Abstr., Moscow, 1983), pp. 243–244Google Scholar
  65. 65.
    A. Maroudas, Hyaluronic acid films. Proc. Inst. Mech. Eng. 181(3J), 122–129 (1967)Google Scholar
  66. 66.
    P.S. Walker, J. Sikorski, D. Dowson et al., Behavior of synovial fluid on surfaces of articular cartilage: a scanning electron microscope study. Ann. Rheum. Dis. 28(1), 1–14 (1969)CrossRefGoogle Scholar
  67. 67.
    S. Huttl, O. Greguska, Hyaluronic Acid—Its Degradation and Protection in Processes, Induced by Oxygen Free Radicals (Abstr. 16-th Sempos. ESOA. Sochy, 1987), pp. 6–11Google Scholar
  68. 68.
    B. Hell, B.S. Kapadi, Artificial lubrication of joints: use of silicone oil. Ann. Phys. Mech. 9, 334–340 (1986)Google Scholar
  69. 69.
    P. Seller, D. Dowson, M. Longfield et al., Requirement of an artificial lubricants for joints, in Bio-Engineering Group on Human Joints (University of Leeds, 1967), pp. 142–148Google Scholar
  70. 70.
    V. Wright, D.J. Haslock, D. Dowson et al., Evaluation of silicone as an artificial lubricant in osteoarthrotic joints. Br. Med. J. 2, 370–377 (1971)CrossRefGoogle Scholar
  71. 71.
    V.O. Ribitsch, Viscoelastic behavior of synovial fluids and artificial replacement, in Biomechanics of Diarthrodial Joints, vol. 2, ed. by V.C. Mow, A. Ratcliffe, S.L.-Y. Woo (Springer, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hon Kong, 1990), pp. 287–304Google Scholar
  72. 72.
    Patent No. 1391577 USA. Int. Cl. CO8L 1/28, A61 K 317/15. Pseudo-Synovial Plastic Body Fluids and Method of Preparing Some/C.A. Homsy, no 11352/73. Filed 8. 03. 73. Complete Specification published 23.04.75Google Scholar
  73. 73.
    J.P. Pelletier, J. Martel-Pelletier, The pathophysiology of osteoarthritis and the implication of the use of hyaluronan and hylan as therapeutic agents in viscosupplementation. J. Rheumatol. 39, 19–24 (1993)Google Scholar
  74. 74.
    J.E. Scott, Hyaluronan, multum in parvo. Eur. J. Rheumatol. Inflamm. 15, 3–8 (1995)Google Scholar
  75. 75.
    G. Abatangelo, M. O’Regan, Hyaluronan: biological role and function in articular joints. Eur. J. Rheumatol. Inflamm. 15, 9–16 (1995)Google Scholar
  76. 76.
    A. Engstrom-Laurent, Hyaluronan in joint disease. J. Int. Med. 242, 57–60 (1997)CrossRefGoogle Scholar
  77. 77.
    L.S. Simon, Viscosupplementation therapy with intra-articular hyaluronic acid. Fact or fantasy? Rheum. Dis. Clin. North Am. 25, 345–357 (1999)CrossRefGoogle Scholar
  78. 78.
    J.D. Evanich, C.J. Evanich, M.B. Wright, J.A. Rydlewicz, Efficacy of intraarticular hyaluronic acid injections in knee osteoarthritis. Clin. Orthop. 390, 173–181 (2001)CrossRefGoogle Scholar
  79. 79.
    K.D. Brandt, J.A. Block, J. Michalski et al., Efficacy and safety of intraarticular sodium hyaluronate in knee osteoarthritis. Clin. Orthop. 385, 130–143 (2001)CrossRefGoogle Scholar
  80. 80.
    S.F. Ermakov, A.V. Beletskii, V.I. Nikolaev, Tribological principles of developing medicinal preparations based on blood serum as a liquid-crystalline medium for therapeutic correction of synovial joints. J. Friction Wear 32(1), 49–53 (2011)CrossRefGoogle Scholar
  81. 81.
    E.D. Beloenko, S.F. Ermakov, B.I. Kupchinov, V.G. Rodnenkov, O.L. Eismont, Liquid-cristal state of joint synovial lubricating medium. Experimental substantiation. Acta Bioeng. Biomech. 3(1), 24–32 (2001)Google Scholar
  82. 82.
    S.F. Ermakov, E.D. Beloenko, O.L. Eismont, Role of liquid crystals in tribological behavior of joint cartilages. J. Friction Wear 25(5), 31–35 (2004)Google Scholar
  83. 83.
    B.I. Koupchinov, S.F. Ermakov, E.D. Belojenko, V.G. Rodnenkov, V.N. Kestelman, Pat. 5,238,929 US, A 61 К 31/56. Correction of tribology of arthritis-affected joints and medicine for its implementation—No. 779,490. Filed 22.10.91. Published 24.08.93Google Scholar
  84. 84.
    B.I. Kupchinov, S.F. Ermakov, V.G. Rodnenkov, E.D. Beloenko, O.L. Eismont, Some results of studies in liquid-crystalline state of synovial lubricant in joints //. J. Friction Wear 23(3), 69–75 (2002)Google Scholar
  85. 85.
    B.I. Kupchinov, S.F. Ermakov, E.D. Beloyenko, A.A. Suslov, Liquid crystalline components of synovia and their role in the joint tribology, in I Sympozjum “Inzynieria Ortopedyczna i Protetyczna—IOP 97” (Bialystok, 1997), pp. 125–131Google Scholar
  86. 86.
    S. Ermakov, B. Kupchinov, E. Beloyenko, A. Suslov, O. Eismont, The effect of liquid crystals on tribomechanical properties of cartilages, in Inzynieria Ortopedyczna i Protetyczna—IOP 99: Proceedings of the Sympozjum (Bialystok, 1999), pp. 93–99Google Scholar
  87. 87.
    S.F. Ermakov, B.I. Kupchinov, V.G. Rodnenkov, E.D. Beloenko, O.L. Eismont, Influence of nature of rubbing surfaces and lubricant on articular cartilage friction. Acta Bioeng. Biomech. 3(1), 65–71 (2001)Google Scholar
  88. 88.
    W. Naucke, Balneotherapeutische Wirkung von Torfen und Einiger Essentieller Torf-Inhaltsstoffe. Zeitschrift fur Baderund Klimaheilkunde 27(3), 230–246 (1980)Google Scholar
  89. 89.
    B. Kupchinov, S. Ermakov, V. Rodnenkov et al., Role of luquid crystals in the lubrication of living joints. Smart Mater. Struct. 2, 7–12 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sergey Ermakov
    • 1
    Email author
  • Alexandr Beletskii
    • 2
  • Oleg Eismont
    • 3
  • Vladimir Nikolaev
    • 3
  1. 1.V. a. Belyi Metal-Polymer Research InstNational Academy of Sciences of BelarusGomelBelarus
  2. 2.Republican Scientific Center for Traumatology and OrthopedyMinskBelarus
  3. 3.Department of Traumatology and OrthopedyGomel State Medical UniversityGomelBelarus

Personalised recommendations