Skip to main content

Self-organized Anodic TiO2 Nanotubes: Functionalities and Applications Due to a Secondary Material

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 220))

Abstract

Among various nanostructures, either electrochemically prepared or electrochemically applicable, vertically oriented, highly ordered TiO2 nanotubular layers have attracted great scientific and technological interest in recent years. They posses a wide range of application opportunities across many fields due to the combination of their unique structure, mechanical and chemical stability, dimensions tunability, intrinsinc properties of TiO2, and the relatively simple and low-cost production. While many recent reviews focus on the synthesis of nanotubes, their properties and applications, there is no comprehensive report summarizing existing results on modifications of TiO2 nanotube layers by a secondary material. Therefore, this chapter gives the state of the art and comprehensive overview on the routes for deposition of secondary materials inside and on tops of TiO2 nanotubes by various means. Such depositions in all known cases exclusively lead either to new tube functionalities that are interesting from the fundamental point of view, or eventually to new advanced applications, most likely not plausible for tubes and deposited materials alone. Most frequently, the deposition proceeds on the very top surface of nanotube layers. However, there are techniques and tricks that allow deposition, decoration, coating or complete filling of nanotube interiors by a secondary material. The whole range of deposition techniques used until now for TiO2 nanotube layers will be introduced and discussed. Selected results achieved for nanotube with secondary materials will be discussed in details. Finally, outlook towards future opportunities of the deposition methods for nanotube functionalizations will be given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AR:

Aspect ratio

PAA:

Porous anodic alumina

ALD:

Atomic layer deposition

QDs:

Quantum dots

IPCE:

Incident photon-to-electron conversion efficiency

SEM:

Scanning electron microscope

TEM:

Transmission electron microscope

VIS:

Visible

References

  1. N. Serpone, E. Pelizzetti (eds.), Photocatalysis—fundamentals and applications (Wiley, Toronto, 1989)

    Google Scholar 

  2. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  Google Scholar 

  3. R. Wang et al., Nature 388, 431 (1997)

    Article  Google Scholar 

  4. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Google Scholar 

  5. B. Ohtani, O.O.P. Mahaney, F. Amano, N. Murakami, R. Abe, J. Adv. Oxid. Technol. 13, 247 (2010)

    Google Scholar 

  6. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, Curr. Opin. Solid State Mater. Sci. 1–2, 3 (2007)

    Google Scholar 

  7. J.M.Macak, J. Pytel, J.R. Ruiz, R. Beranek, Mater. Res. Soc. Symp. Proc. 1211, 1211-R08-34 (2010)

    Google Scholar 

  8. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160 (1998)

    Article  Google Scholar 

  9. Poudel et al., Nanotechnology 16, 1935 (2005)

    Article  Google Scholar 

  10. P. Hoyer, Langmuir 12, 1411 (1996)

    Article  Google Scholar 

  11. V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta 35, 921 (1999)

    Article  Google Scholar 

  12. J.M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem. Int. Ed. 44, 2100 (2005)

    Article  Google Scholar 

  13. D. Li, Y. Xia, Nano Lett. 3, 555 (2003)

    Article  Google Scholar 

  14. X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  15. V. Thavasi, V. Renugopalakrishnan, R. Jose, S. Ramakrishna, Mater.Sci. Eng. R. 63, 81 (2009)

    Google Scholar 

  16. J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small 3, 300 (2007)

    Article  Google Scholar 

  17. S. Sreekantan, L.-Ch. Wei, J. Alloys Comp. 490, 436 (2010)

    Article  Google Scholar 

  18. S.P. Albu, A. Ghicov, J.M. Macak, P. Schmuki, Nano Lett. 7, 1286 (2007)

    Article  Google Scholar 

  19. J.M. Macak, B.G. Gong, M. Hueppe, P. Schmuki, Adv. Mater. 19, 3027 (2007)

    Article  Google Scholar 

  20. J.M. Macak, T. Kohoutek, L. Wang, R. Beranek, Nanoscale 5, 9541 (2013)

    Article  Google Scholar 

  21. L.T. Canham, App. Phys. Lett. 57, 1046 (1990)

    Article  Google Scholar 

  22. G.E. Thompson, G.C. Wood, Nature 290, 230 (1981)

    Article  Google Scholar 

  23. H. Masuda, K. Fukuda, Science 268, 1466 (1995)

    Article  Google Scholar 

  24. J.M. Macak et al., Chem. Phys. Lett. 428, 421 (2006)

    Article  Google Scholar 

  25. S. Farsinezhad et al., J. Nanosci. Nanotechnol. 13, 2885 (2013)

    Article  Google Scholar 

  26. J. Tupala, M. Kemell, E. Harkonen, M. Ritala, M. Leskela, Nanotechnology 23, 125707 (7 pp) (2012)

    Google Scholar 

  27. J.M. Macak, S.P. Albu, P. Schmuki, Physica Status Solidi (RRL) 1, 187 (2007)

    Article  Google Scholar 

  28. J.E. Yoo, K. Lee, M. Altomare, E. Selli, P. Schmuki, Angew. Chem. Int. Ed. 52, 7514 (2013)

    Article  Google Scholar 

  29. K. Lee, A. Mazare, P. Schmuki, Chem. Rev. 114, 9385 (2014)

    Article  Google Scholar 

  30. X. Zhou, N.T. Nguyen, S. Özkan, P. Schmuki, P. Electrochem. Commun. 46, 157 (2014)

    Google Scholar 

  31. A. Ghicov, P. Schmuki, Chem. Commun. 28, 2791 (2009)

    Article  Google Scholar 

  32. P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011)

    Google Scholar 

  33. D. Kowalski, D. Kim, P. Schmuki, Nano Today 8, 235 (2013)

    Article  Google Scholar 

  34. A.F. Cipriano, Ch. Miller, H. Liu, J. Biotech. Nanotech. 10, 2997 (2014)

    Google Scholar 

  35. M. Kulkarni, A. Mazare, E. Gongadze, Š. Perutkova, V. Kralj-Iglic, I. Milošev, P. Schmuki, A. Iglic, M. Mozetic, Nanotechnology 26, 062002 (2015)

    Article  Google Scholar 

  36. R.B. Wehrspoon (Ed.), Ordered Porous Structures and Applications (Springer, Berlin, 2005)

    Google Scholar 

  37. S.Z. Chu, K. Wada, S. Inoue, M. Isogai, A. Yasumori, Adv. Mater. 17, 2115 (2005)

    Article  Google Scholar 

  38. W. Lee, R. Ji, U. Gösele, K. Nielsch, Nat. Mater. 5, 741 (2006)

    Article  Google Scholar 

  39. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura, Appl. Phys. Lett. 71, 2770 (1997)

    Article  Google Scholar 

  40. H. Asoh, K. Nishio, M. Nakao, T. Tamamura, H. Masuda, J. Electrochem. Soc. 148, B152 (2001)

    Article  Google Scholar 

  41. J. Kolar, J.M. Macak, K. Terabe, T. Wagner, J. Mat. Chem. C 2, 349 (2014)

    Article  Google Scholar 

  42. J.M. Macak, C. Zollfrank, B.J. Rodriguez, H. Tsuchiya, M. Alexe, P. Greil, P. Schmuki, Adv. Mater. 21, 3121 (2009)

    Article  Google Scholar 

  43. L. Assaud, V. Heresanu, M. Hanbücken, L. Santinacci, C.R. Chimie 16 (2013) 89

    Google Scholar 

  44. D. Wang, B. Yu, C. Wang, F. Zhou, W. Liu, Adv. Mater. 21, 1964 (2009)

    Article  Google Scholar 

  45. D. Fang, K. Huang, S. Liu, D. Qin, Electrochem. Commun. 11, 901 (2009)

    Article  Google Scholar 

  46. N. Liu, K. Lee, P. Schmuki, Angew. Chem. Int. Ed. 52, 12381 (2013)

    Article  Google Scholar 

  47. Y. Gim, M. Seong, Y.-W. Choi, J. Choi, Electrochem. Commun. 52, 37 (2015)

    Article  Google Scholar 

  48. S. Chen, M. Paulose, Ch. Ruan, G.K. Mor, O.K. Varghese, D. Kouzoudis, C.A. Grimes, J. Photochem. Photobiol. A: Chem 177, 177 (2006)

    Article  Google Scholar 

  49. Y. Yin, Z. Jin, F. Hou, Nanotechnology 18, 495608 (2007)

    Article  Google Scholar 

  50. S. Banerjee, S.K. Mohapatra, P.P. Das, M. Misra, Chem. Mater. 20, 6784 (2008)

    Article  Google Scholar 

  51. Q. Kang, Q. Cai, S.Z. Yao, C.A. Grimes, J. Ye, J. Phys. Chem. C 116, 16885 (2012)

    Article  Google Scholar 

  52. H. Zhang, X. Quan, S. Chen, H. Yu, N. Ma, Chem. Mater. 21, 3090 (2009)

    Article  Google Scholar 

  53. Q. Wang, K. Zhu, N.R. Neale, A.J. Frank, Nano Lett. 9, 806 (2009)

    Article  Google Scholar 

  54. W.-T. Sun, Y. Yum, H.-Y. Pan, X.-F. Gao, Q. Chen, L.-M. Peng, J. Am. Chem. Soc. 130, 1124 (2008)

    Article  Google Scholar 

  55. D.R. Baker, P. Kamat, Adv. Func. Mater. 19, 805 (2009)

    Article  Google Scholar 

  56. J.M. Macak, F. Schmidt-Stein, P. Schmuki, Electrochem. Commun. 9, 1783 (2007)

    Article  Google Scholar 

  57. I. Paramasivam, J.M. Macak, P. Schmuki, Electrochem. Commun. 10, 71 (2008)

    Article  Google Scholar 

  58. I. Paramasivam, J.M. Macak, A. Ghicov, P. Schmuki, Chem. Phys. Lett. 445, 233 (2007)

    Article  Google Scholar 

  59. A. Benoit, I. Paramasivam, Y.-C. Nah, P. Roy, P. Schmuki, Electrochem. Commun. 11, 728 (2009)

    Article  Google Scholar 

  60. Y.-Y.Son, Z.-D. Gao, J.-H. Wang, X.-H. Xia, R. Lynch, Adv. Funct. Mater. 21, 1941 (2011)

    Google Scholar 

  61. C.W. Lai, S. Sreekantan, Electrochim. Acta 87, 294 (2013)

    Article  Google Scholar 

  62. N.K. Shrestha, M. Yang, Y.-C. Nah, I. Paramasivam, P. Schmuki, Electrochem. Commun. 12, 254 (2010)

    Article  Google Scholar 

  63. J.M. Macak, P.J. Barczuk, H. Tsuchiya, M.Z. Nowakowska, A. Ghicov, M. Chojak, S. Bauer, P.J. Kulesza, P. Schmuki, Electrochem. Commun. 7 1417 (2005)

    Google Scholar 

  64. N.K. Shrestha, J.M. Macak, F. Schmidt-Stein, C. Mierke, B. Fabry, P. Schmuki, Angew. Chem. Int. Ed. 48, 969 (2009)

    Article  Google Scholar 

  65. J.M. Macak, R. Kupcik, P. Rehulka, Z. Bilkova, Adv. Funct. Mater, (in preparation)

    Google Scholar 

  66. S.H. Ju, S. Han, J.S. Kim, J. Ind. Eng. Chem. 19, 272 (2013)

    Article  Google Scholar 

  67. M. Leskelä, M. Ritala, Angew. Chem. Int. Ed. 42, 5548 (2003)

    Article  Google Scholar 

  68. M.S. Sander, M.J. Cote, W. Gu, B. Kile, C.P. Tripp, Adv. Mater. 16, 2052 (2004)

    Article  Google Scholar 

  69. M. Kemell, V. Pore, J. Tupala, M. Ritala, M. Leskelä, Chem. Mater. 19, 1816 (2007)

    Article  Google Scholar 

  70. H. Shin, D.-K. Jeong, J. Lee, M. Sung, J. Kim, Adv. Mater. 16, 1197 (2004)

    Article  Google Scholar 

  71. X. Gao, D. Guan, J. Huo, J. Chen, C. Yuan, Nanoscale 5, 10438 (2013)

    Article  Google Scholar 

  72. Y. Huang, G. Pandraud, P.M. Sarro, Nanotechnology 23, 485306 (2012)

    Article  Google Scholar 

  73. J. Tupala, M. Kemell, E. Härkönen, M. Ritala, M. Leskelä, Nanotechnology 23, 125707 (2012)

    Article  Google Scholar 

  74. I. Turkevych, S. Kosar, Y. Pihosh, K. Mawatari, T. Kitamori, J. Ye, K. Shimamura, J. Ceram. Soc. Jap. 122, 393 (2014)

    Article  Google Scholar 

  75. M. Nolan, Phys. Chem. Chem. Phys. 13, 18194 (2011)

    Article  Google Scholar 

  76. J.M. Macak, J. Prikryl, Ms in Preparation

    Google Scholar 

  77. N.T. Nguyen, J.E. Yoo, M. Altomare, P. Schmuki, Chem. Commun. 50 9653 (2014)

    Google Scholar 

  78. J.E. Yoo, K. Lee, P. Schmuki, ChemElectroChem 1, 64 (2014)

    Article  Google Scholar 

  79. D. Kowalski, P. Schmuki, Chem. Commun. 46, 8585 (2010)

    Article  Google Scholar 

  80. D. Kowalski, A. Tighineanu, P. Schmuki, J. Mater. Chem. 21, 17909 (2011)

    Article  Google Scholar 

  81. K. Gulati, S. Ramakrishnan, M.S. Aw, G.J. Atkins, D.M. Findlay, D. Losic, Acta Biomater. 8, 449 (2012)

    Article  Google Scholar 

  82. K. Vasilev, Z. Poh, K. Kant, J. Chan, A. Michelmore, D. Losic, Biomaterials 31, 532 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan M. Macak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Macak, J.M. (2015). Self-organized Anodic TiO2 Nanotubes: Functionalities and Applications Due to a Secondary Material. In: Losic, D., Santos, A. (eds) Electrochemically Engineered Nanoporous Materials. Springer Series in Materials Science, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-319-20346-1_3

Download citation

Publish with us

Policies and ethics