Skip to main content

High-Resolution Latitude Belt Simulation with the Weather Research and Forecasting Model

  • Conference paper
Sustained Simulation Performance 2015

Abstract

Most of the current longer term forecasts are performed on horizontal grid resolutions of 15–50 km due to lack of computational resources. As this resolution can be too coarse to represent certain meteorological features, often limited area models (LAM) on higher resolutions are applied for the region of interest. They require external boundary conditions from a coarser driving model at the edges of the model domain. As this can deteriorate the results due to e.g. cutting through an intense storm, it is desirable to have less boundaries to allow the model to develop its own internal climate. In this study we present a high-resolution latitude belt simulation for half of the northern hemisphere. The horizontal resolution is 0.03 spanning a belt between 20 N and 65 N. The domain encompasses 12000∗1500∗57 grid boxes and is driven by the ECMWF operational analysis. The simulation period was July and August 2013. First results are promising as on average, the simulation of key meteorological variables like temperature, humidity, and wind is close to the ECMWF operational analysis. One of the highlights was the simulation of typhoon Soulik with 10 days lead time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.dtcenter.org/HurrWRF/users/.

References

  1. Browning, K.A.: The dry intrusion perspective of extra-tropical cyclone development. Meteorol. Appl. 4(4), 317–324 (1997)

    Article  Google Scholar 

  2. Chen, F., Dudhia, J.: Coupling an advanced land-surface/hydrology model with the Penn State NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Weather Rev. 129, 569–585 (2001)

    Google Scholar 

  3. Dawson, A., Palmer, T.N., Corti, S.: Simulating regime structures in weather and climate prediction models. Geophys. Res. Lett. 39, L21805 (2012)

    Article  Google Scholar 

  4. Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.N., Vitart, F.: The ERA-interim reanalysis: configuration and performance of the data assimilation system.). Q.J.R. Meteorol. Soc. 137, 553–597 (2011)

    Google Scholar 

  5. Donlon, C.J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., Wimmer, W.: The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens. Environ. 116, 140–158 (2012). Advanced Along Track Scanning Radiometer(AATSR) Special Issue

    Google Scholar 

  6. Hong, S.Y.: Stable boundary layer mixing in a vertical diffusion scheme. In: The Korea Meteorological Society, Fall conference, Seoul, Korea, Oct 25–26, 2007

    Google Scholar 

  7. Iacono, M.J., Delamere, J.S., Mlawer, E.J., Shephard, M.W., Clough, S.A., Collins, W.D.: Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res. 113 (2008)

    Google Scholar 

  8. Jimenéz, P., Dudhia, J., Fidel González-Rouc, F., Navarro, J., Montávez, J., Garcia-Bustamante, E.: A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 140, 898–918 (2012)

    Article  Google Scholar 

  9. Meehl, G.A., and Coauthors: Decadal prediction. Bull. Am. Meteor. Soc. 90, 467–1485 (2009). doi:10.1175/2009BAMS2778.1

  10. Morrison, H., Thompson, G., Tatarskii, V.: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes. Mon. Weather Rev. 137, 991–1007 (2009)

    Article  Google Scholar 

  11. Palmer, T.N.: Climate extremes and the role of dynamics. Proc. Natl. Acad. Sci. 110, 5281–5282 (2013). doi:10.1073/pnas.1303295110

    Article  Google Scholar 

  12. Schwitalla, T., Wulfmeyer, V.: Radar data assimilation experiments using the IPM WRF rapid update cycle. Meteorol. Z. 23, 79–102 (2014)

    Article  Google Scholar 

  13. Schwitalla, T., Bauer, H.S., Wulfmeyer, V., Zängl, G.: Systematic errors of QPF in low-mountain regions as revealed by MM5 simulations. Meterol. Z. 17, 903–919 (2008)

    Article  Google Scholar 

  14. Schwitalla, T., Bauer, H.S., Wulfmeyer, V., Aoshima, F.: High-resolution simulation over central Europe: assimilation experiments during COPS IOP 9c. Q. J. R. Meteorol. Soc. 137(S1), 156–175 (2011)

    Article  Google Scholar 

  15. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D., Barker, D.O., Duda, M.G., Wang, W., Powers, J.G.: A description of the Advanced Research WRF version 3. NCAR Technical Note TN-475+STR, NCAR, Boulder/CO, 2008

    Google Scholar 

  16. Warrach-Sagi, K., Schwitalla, T., Wulfmeyer, V., Bauer, H.S.: Evaluation of a climate simulation in Europe based on the WRF-NOAH model system: precipitation in Germany. Climate Dynam. 41(3–4), 755–774 (2013). doi:10.1007/S00382-013-1727-7

    Article  Google Scholar 

  17. Žagar, N., Honzak, L., Žabkar, R., Skok, G., Rakovec, J., Ceglar, A.: Uncertainties in a regional climate model in the midlatitudes due to the nesting technique and the domain size. J. Geophys. Res. 118(12), 6189–6199 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was greatly supported by U. Küster, T. Beisel, and T. Bönisch from HLRS. We also achieved valuable technical support from S. Andersson and S. Dieterich from Cray Inc. We are also grateful to ECMWF for providing ECMWF analysis data from the operational model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schwitalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Schwitalla, T., Warrach-Sagi, K., Wulfmeyer, V. (2015). High-Resolution Latitude Belt Simulation with the Weather Research and Forecasting Model. In: Resch, M., Bez, W., Focht, E., Kobayashi, H., Qi, J., Roller, S. (eds) Sustained Simulation Performance 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-20340-9_15

Download citation

Publish with us

Policies and ethics