Arbitrary Geometries for High Order Discontinuous Galerkin Methods

  • Harald KlimachEmail author
  • Jens Zudrop
  • Sabine Roller
Conference paper


This paper outlines a method to obtain high order polynomial geometry representations from triangulated surfaces (STL files). The main application in mind for this procedure are discontinuous Galerkin methods of high order, where the produced data can be used to accurately represent material properties. The presented strategy is implemented in the freely available open source mesh generator Seeder. It makes use of a robust flood-filling of the domain with an arbitrary number of colors to represent different computational areas. Seeder produces a mesh format, that is suitable for processing on large scale parallel systems with distributed memory.


Final Mesh Discontinuous Galerkin Method Color Distribution High Order Method High Order Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alpert, B.K., Rokhlin, V.: A fast algorithm for the evaluation of legendre expansions. SIAM J. Sci. Stat. Comput. 12(1), 158–179 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bueno-Orovio, A., Pérez-García, V.M.: Spectral smoothed boundary methods: the role of external boundary conditions. Numer. Methods Partial Diff. Equations 22(2), 435–448 (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231 (2005). Special issue on “Program Generation, Optimization, and Platform Adaptation”Google Scholar
  4. 4.
    Harlacher, D.F., Hasert, M., Klimach, H., Zimny, S., Roller, S.: Tree based voxelization of stl data. In: Resch, M., Wang, X., Bez, W., Focht, E., Kobayashi, H., Roller, S. (eds.) High Performance Computing on Vector Systems 2011, pp. 81–92. Springer, Berlin/Heidelberg (2012)Google Scholar
  5. 5.
    Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, 1st edn. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Hindenlang, F., Bolemann, T., Munz, C.D.: Mesh curving techniques for high order discontinuous Galerkin simulations. In: IDIHOM: Industrialization of High-Order Methods-A Top-Down Approach, pp. 133–152. Springer, Heidelberg (2015)Google Scholar
  7. 7.
    Ishida, T., Takahashi, S., Nakahashi, K.: Efficient and robust cartesian mesh generation for building-cube method. J. Commod. Sci. Technol. Qual.2(4), 435–446 (2008)CrossRefGoogle Scholar
  8. 8.
    Klimach, H., Masilamani, K., Harlacher, D., Hasert, M.: Seeder.
  9. 9.
    Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Peskin, C.S.: The immersed boundary method. Acta Numerica 11, 479–517 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sabetghadam, F., Sharafatmandjoor, S., Norouzi, F.: Fourier spectral embedded boundary solution of the poisson’s and laplace equations with dirichlet boundary conditions. J. Comput. Phys. 228(1), 55–74 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
  13. 13.
    Wilbraham, H.: On a certain periodic function. Cambridge Dublin Math. J 3, 198–201 (1848)Google Scholar
  14. 14.
    Yerry, M.A., Shephard, M.S.: Automatic three-dimensional mesh generation by the modified-octree technique. Int. J. Numer. Methods Eng. 20(11), 1965–1990 (1984)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of SiegenSiegenGermany
  2. 2.Simulation Techniques and Scientific ComputingUniversity of SiegenSiegenGermany

Personalised recommendations