Null Holomorphic Curves in \(\mathbb{C}^{3}\) and Applications to the Conformal Calabi-Yau Problem

  • Antonio AlarcónEmail author
  • Franc Forstnerič
Conference paper
Part of the Abel Symposia book series (ABEL, volume 10)


In this paper we survey some recent contributions by the authors (Alarcón and Forstnerič, Math Ann 357:1049–1070, 2013; Invent Math 196:733–771, 2014; Math Ann, in press, arXiv:1308.0903) to the theory of null holomorphic curves in the complex Euclidean space \(\mathbb{C}^{3}\), as well as their applications to null holomorphic curves in the special linear group \(SL_{2}(\mathbb{C})\), minimal surfaces in the Euclidean space \(\mathbb{R}^{3}\), and constant mean curvature one surfaces (Bryant surfaces) in the hyperbolic space \(\mathbb{H}^{3}\). The paper is an expanded version of the lecture given by the second named author at the Abel Symposium 2013 in Trondheim.


Riemann surfaces Complex curves Null holomorphic curves Minimal surfaces Bryant surfaces Complete immersions Proper immersions 



A. Alarcón is supported by Vicerrectorado de Política Científica e Investigación de la Universidad de Granada, and is partially supported by MCYT-FEDER grant MTM2011-22547 and Junta de Andalucía Grant P09-FQM-5088. F. Forstnerič is supported by the program P1-0291 and the grant J1-5432 from ARRS, Republic of Slovenia.


  1. 1.
    Alarcón, A., Fernández, I.: Complete minimal surfaces in \(\mathbb{R}^{3}\) with a prescribed coordinate function. Differ. Geom. Appl. 29 suppl. 1, S9–S15 (2011)zbMATHCrossRefGoogle Scholar
  2. 2.
    Alarcón, A., Fernández, I., López, F.J.: Complete minimal surfaces and harmonic functions. Comment. Math. Helv. 87, 891–904 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Alarcón, A., Fernández, I., López, F.J.: Harmonic mappings and conformal minimal immersions of Riemann surfaces into \(\mathbb{R}^{N}\). Calc. Var. Partial Differ. Equ. 47, 227–242 (2013)zbMATHCrossRefGoogle Scholar
  4. 4.
    Alarcón, A., Ferrer, L., Martín, F.: Density theorems for complete minimal surfaces in \(\mathbb{R}^{3}\). Geom. Funct. Anal. 18, 1–49 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Alarcón, A., Forstnerič, F.: Every bordered Riemann surface is a complete proper curve in a ball. Math. Ann. 357, 1049–1070 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Alarcón, A., Forstnerič, F.: Null curves and directed immersions of open Riemann surfaces. Invent. Math. 196, 733–771 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Alarcón, A., Forstnerič, F.: The Calabi-Yau problem, null curves, and Bryant surfaces. Math. Ann. (in press). arXiv:1308.0903
  8. 8.
    Alarcón, A., López, F.J.: Minimal surfaces in \(\mathbb{R}^{3}\) properly projecting into \(\mathbb{R}^{2}\). J. Diff. Geom. 90, 351–382 (2012)zbMATHGoogle Scholar
  9. 9.
    Alarcón, A., López, F.J.: Null curves in \(\mathbb{C}^{3}\) and Calabi-Yau conjectures. Math. Ann. 355, 429–455 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Alarcón, A., López, F.J.: Compact complete null curves in complex 3-space. Isr. J. Math. 195, 97–122 (2013)zbMATHCrossRefGoogle Scholar
  11. 11.
    Alarcón, A., López, F.J.: Proper holomorphic embeddings of Riemann surfaces with arbitrary topology into \(\mathbb{C}^{2}\). J. Geom. Anal. 23, 1794–1805 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Alarcón, A., López, F.J.: Properness of associated minimal surfaces. Trans. Am. Math. Soc. 366, 5139–5154 (2014)zbMATHCrossRefGoogle Scholar
  13. 13.
    Alarcón, A., López, F.J.: A complete bounded embedded complex curve in \(\mathbb{C}^{2}\). J. Eur. Math. Soc. (JEMS), to appear. arXiv:1305.2118 Google Scholar
  14. 14.
    Alexander, H., Wermer, J.: Polynomial hulls with convex fibers. Math. Ann. 271, 99–109 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Bedford, E., Gaveau, B.: Envelopes of holomorphy of certain 2-spheres in \(\mathbb{C}^{2}\). Am. J. Math. 105, 975–1009 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Bedford, E., Klingenberg, W.: On the envelope of holomorphy of a 2-sphere in \(\mathbb{C}^{2}\). J. Am. Math. Soc. 4, 623–646 (1991)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Bell, S.R., Narasimhan, R.: Proper holomorphic mappings of complex spaces. In: Several Complex Variables, VI. Encyclopaedia of Mathematical Sciences, vol. 69, pp. 1–38. Springer, Berlin (1990)Google Scholar
  18. 18.
    Berndtsson, B., Ransford, T.J.: Analytic multifunctions, the \(\overline{\partial }\)-equation, and a proof of the corona theorem. Pac. J. Math. 124, 57–72 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Birkhoff, G.D.: Singular points of ordinary linear differential equations. Trans. Am. Math. Soc. 10, 436–470 (1909)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Bishop, E.: Differentiable manifolds in complex Euclidean spaces. Duke Math. J. 32, 1–21 (1965)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Bolibrukh, A.A.: Sufficient conditions for the positive solvability of the Riemann-Hilbert problem. Math. Notes 51, 110–117 (1992)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Bryant, R.: Surfaces of mean curvature one in hyperbolic space. Théorie des variétés minimales et applications (Palaiseau, 1983–1984). Astérisque 154–155 (1987), 12, 321–347, 353 (1988)Google Scholar
  23. 23.
    Bu, S.Q., Schachermayer, W.: Approximation of Jensen measures by image measures under holomorphic functions and applications. Trans. Am. Math. Soc. 331, 585–608 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Calabi, E.: Problems in differential geometry. In: Kobayashi, S., Eells, J. Jr. (eds.) Proceedings of the United States-Japan Seminar in Differential Geometry, Kyoto, 1965, p. 170. Nippon Hyoronsha Co., Tokyo (1966)Google Scholar
  25. 25.
    Černe, M.: Analytic discs attached to a generating CR-manifold. Ark. Mat. 33, 217–248 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Černe, M.: Nonlinear Riemann-Hilbert problem for bordered Riemann surfaces. Am. J. Math. 126, 65–87 (2004)zbMATHCrossRefGoogle Scholar
  27. 27.
    Černe, M., Forstnerič, F.: Embedding some bordered Riemann surfaces in the affine plane Math. Res. Lett. 9, 683–696 (2002)zbMATHGoogle Scholar
  28. 28.
    Colding, T.H., Minicozzi, W.P. II: The Calabi-Yau conjectures for embedded surfaces. Ann. Math. (2) 167, 211–243 (2008)Google Scholar
  29. 29.
    Collin, P., Hauswirth, L., Rosenberg, H.: The geometry of finite topology Bryant surfaces. Ann. Math. (2) 153, 623–659 (2001)Google Scholar
  30. 30.
    Coupet, B., Sukhov, A., Tumanov, A.: Proper J-holomorphic discs in Stein domains of dimension 2. Am. J. Math. 131, 653–674 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Drinovec Drnovšek, B.: Proper holomorphic discs avoiding closed convex sets. Math. Z. 241, 593–596 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Drinovec Drnovšek, B.: Proper discs in Stein manifolds avoiding complete pluripolar sets. Math. Res. Lett. 11, 575–581 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Drinovec Drnovšek, B., Forstnerič, F.: Holomorphic curves in complex spaces. Duke Math. J. 139, 203–254 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Drinovec Drnovšek, B., Forstnerič, F.: The Poletsky-Rosay theorem on singular complex spaces. Indiana Univ. Math. J. 61, 1407–1423 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Drinovec Drnovšek, B., Forstnerič, F.: Disc functionals and Siciak-Zaharyuta extremal functions on singular varieties. Ann. Polon. Math. 106, 171–191 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Eliashberg, Y.: Filling by holomorphic discs and its applications. In: Geometry of Low-Dimensional Manifolds, 2 (Durham, 1989). London Mathematical Society Lecture Note Series, vol. 151, pp. 45–67. Cambridge University Press, Cambridge (1990)Google Scholar
  37. 37.
    Federer, H: Geometric Measure Theory. Springer, New York (1969)zbMATHGoogle Scholar
  38. 38.
    Ferrer, L., Martín, F., Meeks, W.H. III: Existence of proper minimal surfaces of arbitrary topological type. Adv. Math. 231, 378–413 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Ferrer, L., Martín, F., Umehara, M., Yamada, K.: A construction of a complete bounded null curve in \(\mathbb{C}^{3}\). Kodai Math. J. 37, 59–96 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Forstnerič, F.: On polynomially convex hulls with piecewise smooth boundaries. Math. Ann. 267, 97–104 (1987)Google Scholar
  41. 41.
    Forstnerič, F.: Polynomial hulls of sets fibered over the circle. Indiana Univ. Math. J. 37, 869–889 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Forstnerič, F.: Stein Manifolds and Holomorphic Mappings (The Homotopy Principle in Complex Analysis). Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 56. Springer, Berlin/Heidelberg (2011)Google Scholar
  43. 43.
    Forstnerič, F., Globevnik, J.: Discs in pseudoconvex domains. Comment. Math. Helv. 67, 129–145 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Forstnerič, F., Globevnik, J.: Proper holomorphic discs in \(\mathbb{C}^{2}\). Math. Res. Lett. 8, 257–274 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Forstnerič, F., Wold, E.F.: Bordered Riemann surfaces in \(\mathbb{C}^{2}\). J. Math. Pures Appl. 91, 100–114 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Forstnerič, F., Wold, E.F.: Embeddings of infinitely connected planar domains into \(\mathbb{C}^{2}\). Anal. PDE 6, 499–514 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    Gakhov, F.D.: Boundary Value Problems. Reprint of the 1966 English translation. Dover Publications, New York (1990)Google Scholar
  48. 48.
    Globevnik, J.: Boundary interpolation and proper holomorphic maps from the disc to the ball. Math. Z. 198, 143–150 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    Globevnik, J.: Relative embeddings of discs into convex domains. Invent. Math. 98, 331–350 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    Globevnik, J.: Perturbation by analytic discs along maximal real submanifolds of \(\mathbb{C}^{N}\). Math. Z. 217, 287–316 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Globevnik, J.: Discs in Stein manifolds. Indiana Univ. Math. J. 49, 553–574 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    Globevnik, J., Stensønes, B.: Holomorphic embeddings of planar domains into \(\mathbb{C}^{2}\). Math. Ann. 303, 579–597 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    Grauert, H.: Theory of q-convexity and q-concavity. In: Several Complex Variables, VII. Encyclopaedia of Mathematical Sciences, vol. 74, pp. 259–284. Springer, Berlin (1994)Google Scholar
  54. 54.
    Gromov, M.: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  55. 55.
    Hilbert, D.: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Chelsea Publishing Company, New York (1953)zbMATHGoogle Scholar
  56. 56.
    Hofer, H., Lizan, V., Sikorav, J.-C.: On genericity for holomorphic curves in four-dimensional almost-complex manifolds. J. Geom. Anal. 7, 149–159 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  57. 57.
    Hoffman, D., Meeks, W.H. III: The strong halfspace theorem for minimal surfaces. Invent. Math. 101, 373–377 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    Jones, P.W.: A complete bounded complex submanifold of \(\mathbb{C}^{3}\). Proc. Am. Math. Soc. 76, 305–306 (1979)zbMATHGoogle Scholar
  59. 59.
    Jorge, L.P., Xavier, F.: A complete minimal surface in \(\mathbb{R}^{3}\) between two parallel planes. Ann. Math. (2) 112, 203–206 (1980)Google Scholar
  60. 60.
    Kenig, C.E., Webster, S.M.: The local hull of holomorphy of a surface in the space of two complex variables. Invent. Math. 67, 1–21 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  61. 61.
    Kostov, V.P.: Fuchsian linear systems on \(\mathbb{C}\mathbb{P}^{1}\) and the Riemann-Hilbert problem. C. R. Acad. Sci. Paris Sér. I Math. 315, 143–148 (1992)zbMATHMathSciNetGoogle Scholar
  62. 62.
    Lafontaine, J., Audin, M. (eds.): Holomorphic Curves in Symplectic Geometry. Progress in Mathematics, vol. 117. Birkhäuser, Basel (1994)Google Scholar
  63. 63.
    Lawson, B.: Complete minimal surfaces in S 3. Ann. Math. (2) 92, 335–374 (1970)Google Scholar
  64. 64.
    Lempert, L.: La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. Fr. 109, 427–474 (1981)zbMATHMathSciNetGoogle Scholar
  65. 65.
    López, F.J.: A nonorientable complete minimal surface in \(\mathbb{R}^{3}\) between two parallel planes. Proc. Am. Math. Soc. 103, 913–917 (1988)zbMATHCrossRefGoogle Scholar
  66. 66.
    López, F.J.: Hyperbolic complete minimal surfaces with arbitrary topology. Trans. Am. Math. Soc. 350, 1977–1990 (1998)zbMATHCrossRefGoogle Scholar
  67. 67.
    Majcen, I.: Embedding certain infinitely connected subsets of bordered Riemann surfaces properly into \(\mathbb{C}^{2}\). J. Geom. Anal. 19, 695–707 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  68. 68.
    Martín, F., Umehara, M., Yamada, K.: Complete bounded null curves immersed in \(\mathbb{C}^{3}\) and \(SL(2, \mathbb{C})\). Calc. Var. Partial Differ. Equ. 36, 119–139 (2009); Erratum: complete bounded null curves immersed in \(\mathbb{C}^{3}\) and \(SL(2, \mathbb{C})\). Calc. Var. Partial Differ. Equ. 46, 439–440 (2013)Google Scholar
  69. 69.
    Martín, F., Umehara, M., Yamada, K.: Complete bounded holomorphic curves immersed in \(\mathbb{C}^{2}\) with arbitrary genus. Proc. Am. Math. Soc. 137, 3437–3450 (2009)zbMATHCrossRefGoogle Scholar
  70. 70.
    Meeks, W.H. III: Global problems in classical minimal surface theory. In: Global Theory of Minimal Surfaces. Clay Mathematics Proceedings, vol. 2, pp. 453–469. American Mathematical Society, Providence (2005)Google Scholar
  71. 71.
    Meeks, W.H. III, Pérez, J., Ros, A.: The embedded Calabi-Yau conjectures for finite genus.
  72. 72.
    Morales, S.: On the existence of a proper minimal surface in \(\mathbb{R}^{3}\) with a conformal type of disk. Geom. Funct. Anal. 13, 1281–1301 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  73. 73.
    Muskhelishvili, N.I.: Singular Integral Equations. Corrected reprint of the 1953 English translation. Dover Publications, New York (1992)Google Scholar
  74. 74.
    Nadirashvili, N.: Hadamard’s and Calabi-Yau’s conjectures on negatively curved and minimal surfaces. Invent. Math. 126, 457–465 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  75. 75.
    Osserman, R.: A Survey of Minimal Surfaces, 2nd edn. Dover Publications, New York (1986)Google Scholar
  76. 76.
    Plemelj, J.: Riemannsche Funktionenscharen mit gegebenen Monodromiegruppe. Monatsh. Math. Phys. 19, 211–245 (1908)zbMATHMathSciNetCrossRefGoogle Scholar
  77. 77.
    Plemelj, J.: Problems in the sense of Riemann and Klein. Edited and translated by J.R.M. Radok. Interscience Tracts in Pure and Applied Mathematics, vol. 16. Interscience Publishers/Wiley, New York/London/Sydney (1964)Google Scholar
  78. 78.
    Poletsky, E.A.: Plurisubharmonic functions as solutions of variational problems. In: Several Complex Variables and Complex Geometry, Part 1 (Santa Cruz, 1989). Proceedings of Symposia in Pure Mathematics, vol. 52, Part 1, pp. 163–171. American Mathematical Society, Providence (1991)Google Scholar
  79. 79.
    Poletsky, E.A.: Holomorphic currents. Indiana Univ. Math. J. 42, 85–144 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  80. 80.
    Privalov, I.I.: On a boundary problem in analytic function theory (Russian). Mat. Sb. 41, 519–526 (1934)zbMATHMathSciNetGoogle Scholar
  81. 81.
    Riemann, B.: Gesammelte mathematische Werke und wissenschaftlicher Nachlass. Dover Publications, New York (1953)zbMATHGoogle Scholar
  82. 82.
    Rosenberg, H.: Bryant surfaces. In: The Global Theory of Minimal Surfaces in Flat Spaces (Martina Franca, 1999). Lecture Notes in Mathematics, vol. 1775, pp. 67–111. Springer, Berlin (2002)Google Scholar
  83. 83.
    Rosenberg, H., Toubiana, E.: A cylindrical type complete minimal surface in a slab of \(\mathbb{R}^{3}\). Bull. Sci. Math. (2) 111, 241–245 (1987)Google Scholar
  84. 84.
    Schoen. R., Yau, S.T.: Lectures on harmonic maps. In: Conference Proceedings and Lecture Notes in Geometry and Topology, II. International Press, Cambridge (1997)Google Scholar
  85. 85.
    Slodkowski, Z.: Polynomial hulls in \(\mathbb{C}^{2}\) and quasicircles. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989) 367–391 (1990)Google Scholar
  86. 86.
    Šnirel’man, A.I.: The degree of a quasiruled mapping, and the nonlinear Hilbert problem (Russian). Mat. Sb. (N.S.) 89 (131), 366–389, 533 (1972)Google Scholar
  87. 87.
    Sukhov, A., Tumanov, A.: Filling real hypersurfaces by pseudoholomorphic discs. J. Geom. Anal. 18, 632–649 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  88. 88.
    Sukhov, A., Tumanov, A.: Regularization of almost complex structures and gluing holomorphic discs to tori. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10, 389–411 (2011)Google Scholar
  89. 89.
    Trépreau, J.-M.: Sur le prolongement holomorphe des fonctions CR définies sur une hypersurface réelle de classe \(\mathcal{C}^{2}\) dans \(\mathbb{C}^{n}\). Invent. Math. 83, 583–592 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  90. 90.
    Tumanov, A.E.: Extension of CR-functions into a wedge from a manifold of finite type (Russian). Mat. Sb. (N.S.) 136 (178), 128–139 (1988); translation in Math. USSR-Sb. 64, 129–140 (1989)Google Scholar
  91. 91.
    Tumanov, A.E.: Extension of CR-functions into a wedge (Russian). Mat. Sb. 181, 951–964 (1990); Translation in Math. USSR-Sb. 70, 385–398 (1991)Google Scholar
  92. 92.
    Tumanov, A.: Analytic discs and the extendibility of CR functions. In: Integral Geometry, Radon Transforms and Complex Analysis (Venice, 1996). Lecture Notes in Mathematics, vol. 1684, pp. 123–141. Springer, Berlin (1998)Google Scholar
  93. 93.
    Umehara, M., Yamada, K.: Complete surfaces of constant mean curvature 1 in the hyperbolic 3-space. Ann. Math. (2) 137, 611–638 (1993)Google Scholar
  94. 94.
    Vekua, N.P.: Systems of Singular Integral Equations. P. Noordhoff, Groningen (1967)zbMATHGoogle Scholar
  95. 95.
    Wegert, E.: Nonlinear Boundary Value Problems for Holomorphic Functions and Singular Integral Equations. Mathematical Research, vol. 65. Akademie-Verlag, Berlin (1992)Google Scholar
  96. 96.
    Yang, P.: Curvatures of complex submanifolds of \(\mathbb{C}^{n}\). J. Differ. Geom. 12, 499–511 (1977)zbMATHGoogle Scholar
  97. 97.
    Yang, P.: Curvature of complex submanifolds of \(\mathbb{C}^{n}\). In: Proceedings of Symposia in Pure Mathematics, vol. 30, part 2, pp. 135–137. American Mathematical Society, Providence (1977)Google Scholar
  98. 98.
    Yau, S.T.: Problem Section. In: Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102, pp. 669–706. Princeton University Press, Princeton (1982)Google Scholar
  99. 99.
    Yau, S.T.: Review of geometry and analysis. In: Mathematics: Frontiers and Perspectives. Annals of Mathematics Studies, pp. 353–401. American Mathematical Society, Providence (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Departamento de Geometría y TopologíaUniversidad de GranadaGranadaSpain
  2. 2.Faculty of Mathematics and PhysicsInstitute of Mathematics, Physics and Mechanics, University of LjubljanaLjubljanaSlovenia

Personalised recommendations