Fatou Coordinates for Parabolic Dynamics

  • Tetsuo UedaEmail author
Conference paper
Part of the Abel Symposia book series (ABEL, volume 10)


We will give an overview on the use of Fatou coordinates in the study of (semi-)parabolic fixed points and their bifurcations.


Riemann Surface Riemann Sphere Holomorphic Automorphism Polynomial Automorphism Intrinsic Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \(\mathbb{C}^{2}\): currents, equilibrium measure and hyperbolicity. Invent. Math. 103(1), 69–99 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \(\mathbb{C}^{2}\): hyperbolicity and external rays. Ann. Sci. École Norm. Supér. (4) 32(4), 455–497 (1999)Google Scholar
  3. 3.
    Bedford, E., Smillie, J., Ueda, T.: Parabolic Bifurcations in Complex Dimension 2 (preprint). arXiv:1208.2577Google Scholar
  4. 4.
    Douady, A., Hubbard, J.H.: Étude dynamique des polynômes complexes, Partie I. Publications Mathématiques d’Orsay, 84–2. Université de Paris-Sud (1984)Google Scholar
  5. 5.
    Douady, A., Sentenac, P., Zinsmeister, M.: Implosion parabolique et dimension de Hausdorff. C. R. Acad. Sci. Paris Sér. I Math. 325(7), 765–772 (1997)Google Scholar
  6. 6.
    Duady, A.: Does a Julia set depend continuously on the polynomial? In: Complex Dynamical Systems, Cincinnati, 1994. Proceedings of Symposia in Applied Mathematics, vol. 49, pp. 94–138. American Mathematical Society, Providence (1994)Google Scholar
  7. 7.
    Écalle, J.: Les fonctions résurgentes, Vol. 1 and 2. Publ. Math. d’Orsay 81–05 and 81–06 (1981)Google Scholar
  8. 8.
    Fatou, P.: Sur les équations fonctionnelles. Bull. Soc. Math. France 47, 161–271 (1919); 48 (1920), 33–94, 208–314.Google Scholar
  9. 9.
    Fatou, P.: Substitutions analytiques et equations fonctionelles de deux variables. Ann. Sc. Ec. Norm. Sup. 67–142 (1924)Google Scholar
  10. 10.
    Fornæss, J.E., Sibony, N.: Complex Hénon mappings in \(\mathbb{C}^{2}\) and Fatou-Bieberbach domains. Duke Math. J. 65(2), 345–380 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Friedland, S., Milnor, J.: Dynamical properties of plane polynomial automorphisms. Ergod. Theory Dyn. Syst. 6, 67–99 (1989)MathSciNetGoogle Scholar
  12. 12.
    Hubbard, J.H., Oberste-Vorth, R.: Hénon mappings in the complex domain I. The global topology of dynamical space. Inst. Hautes Études Sci. Publ. Math. 79, 5–46 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Lavaurs, P.: System̀es dynamiques holomorphiques: explosion de points périodiques, Thèse, Université Paris Sud (1989)Google Scholar
  14. 14.
    Milnor, J.: Dynamics in One Complex Variable. Annals of Mathematics Studies. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  15. 15.
    Morosawa, S., Nishimura, Y., Taniguchi, M., Ueda, T.: Holomorphic Dynamics. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge/New York (2000)zbMATHGoogle Scholar
  16. 16.
    Oudkerk, R.: Parabolic implosion for \(f_{0}(z) = z + z^{\nu +1} + \mathcal{O}(z^{\nu +2})\), thesis, University of Warwick (1999)Google Scholar
  17. 17.
    Oudkerk, R.: The parabolic implosion: Lavaurs maps and strong convergence for rational maps. In: Value Distribution Theory and Complex Dynamics, Hong Kong, 2000. Contemporary Mathematics, vol. 303, pp. 79–105. American Mathematical Society, Providence (2002)Google Scholar
  18. 18.
    Shishikura, M.: Bifurcation of parabolic fixed points. In: Tan, L. (ed.) The Mandelbrot Set, Theme and Variations. London Mathematical Society Lecture Note Series, vol. 274, pp. 325–363. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  19. 19.
    Ueda, T.: Local structure of analytic transformations of two complex variables I. J. Math. Kyoto Univ. 26(2), 233–261 (1986)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Ueda, T.: Local structure of analytic transformations of two complex variables II. J. Math. Kyoto Univ. 31(3), 695–711 (1991)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Ueda, T.: Simultaneous linearization of holomorphic maps with hyperbolic and parabolic fixed points. Publ. RIMS Kyoto Univ. 44, 91–105 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Voronin, S.M.: Analytic classification of germs of conformal mappings \((\mathbf{C},0) \rightarrow (\mathbf{C},0)\). Funktsional. Anal. i priozhen 15(1), 1–17 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Zinsmeister, M.: Parabolic implosion in five days, Notes from a course given at Skylark, Sept 1997Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MathematicsKyoto UniversityKyotoJapan

Personalised recommendations