Skip to main content

Discrete Time: Smoothing Algorithms

  • Chapter
Book cover Data Assimilation

Part of the book series: Texts in Applied Mathematics ((TAM,volume 62))

  • 5649 Accesses

Abstract

The formulation of the data-assimilation problem described in the previous chapter is probabilistic, and its computational resolution requires the probing of a posterior probability distribution on signal-given data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Indeed, we prove such a result in Lemma 4.7 in the context of the particle filter .

  2. 2.

    Recall that we use the ∧ operator to denote the minimum between two real numbers.

References

  1. A. Beskos, G. O. Roberts, A. M. Stuart, and J. Voss. MCMC methods for diffusion bridges. Stochastic Dynamics, 8(3):319–350, Sep 2008.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Brooks and A. Gelman. General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7(4):434–455, 1998.

    MathSciNet  Google Scholar 

  3. A. Bryson and M. Frazier. Smoothing for linear and nonlinear dynamic systems. In Proceedings Optimum System Synthesis Conference. US Air Force Tech. Rep. AFB-TDR-63-119, 1963.

    Google Scholar 

  4. S. L. Cotter, M. Dashti, and A. M. Stuart. Variational data assimilation using targeted random walks. Int. J. Num. Meth. Fluids, 2011.

    Google Scholar 

  5. S. L. Cotter, G. Roberts, A. M. Stuart, and D. White. MCMC methods for functions: modifying old algorithms to make them faster. Statistical Science, 28:424–446, 2013.

    Article  MathSciNet  Google Scholar 

  6. M. Dashti, K. J. H. Law, A. M. Stuart, and J. Voss. MAP estimators and posterior consistency in Bayesian nonparametric inverse problems. Inverse Problems, 29:095017, 2013.

    Article  MathSciNet  Google Scholar 

  7. A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian Data Analysis. CRC Press, 2013.

    Google Scholar 

  8. A. Gelman and D. B. Rubin. Inference from iterative simulation using multiple sequences. Statistical science, pages 457–472, 1992.

    Google Scholar 

  9. W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97–109, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. H. Hoang, K. J. Law, and A. M. Stuart. Determining white noise forcing from Eulerian observations in the Navier–Stokes equation. Stochastic Partial Differential Equations: Analysis and Computations, 2(2):233–261, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems, volume 160 of Applied Mathematical Sciences. Springer-Verlag, New York, 2005.

    Google Scholar 

  12. J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer Series in Statistics. Springer, 2001.

    MATH  Google Scholar 

  13. N. Metropolis, R. Rosenbluth, M. Teller, and E. Teller. Equations of state calculations by fast computing machines. J. Chem. Phys., 21:1087–1092, 1953.

    Article  Google Scholar 

  14. S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Communications and Control Engineering Series. Springer-Verlag London Ltd., London, 1993.

    Book  MATH  Google Scholar 

  15. J. Nocedal and S. Wright. Numerical Optimization. Springer Verlag, 1999.

    Google Scholar 

  16. C. Robert and G. Casella. Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer-Verlag, 1999.

    Book  MATH  Google Scholar 

  17. D. Zupanski. A general weak constraint applicable to operational 4DVAR data assimilation systems. Mon. Wea. Rev., 125:2274–2292, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

3.1 Electronic Supplementary material

Below is the link to the electronic supplementary material.

matlab files (ZIP 12 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Law, K., Stuart, A., Zygalakis, K. (2015). Discrete Time: Smoothing Algorithms. In: Data Assimilation. Texts in Applied Mathematics, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-20325-6_3

Download citation

Publish with us

Policies and ethics