Advertisement

Quantifying Structural and Functional Differences Between Normal and Fibrotic Ventricles

  • Prashanna KhwaounjooEmail author
  • Ian J. LeGrice
  • Mark L. Trew
  • Bruce H. Smaill
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)

Abstract

Fibrosis is a significant component of cardiac remodeling in heart failure. However, such remodeling has not been fully quantified across a range of scales and the functional impacts on arrhythmogenesis are still poorly understood. Transmural ventricular tissue samples from WKY and SHR rats are imaged and analyzed structurally at the scale of myocardial laminae. New imaging protocols and immunohistochemical labeling are investigated for 3D reconstructions of cell distributions and interconnectivity. At larger scales, there are obvious structural differences between WKY and SHR tissue in fiber rotation and tissue connectivity. Electrical activation models show less significant differences in functional behavior between the two tissue types. Imaging extended volume 3D cell connectivity provides promising insights and will be used in the future to inform modeling at larger scales.

Keywords

Cardiac remodeling Cardiomyopathy Heart failure Biophysical modelling Imaging techniques 

References

  1. 1.
    Zipes, D.P., Wellens, H.J.J.: Sudden cardiac death. Circulation 98, 2334–2351 (1998)CrossRefGoogle Scholar
  2. 2.
    Schaper, J., Kostin, S., Hein, S., Elsässer, A., Arnon, E., Zimmermann, R.: Structural remodelling in heart failure. Exp. Clin. Cardiol. 7, 64–68 (2002)Google Scholar
  3. 3.
    Houser, S.R., Margulies, K.B., Murphy, A.M., Spinale, F.G., Francis, G.S., Prabhu, S.D., Rockman, H.A., Kass, D.A., Molkentin, J.D., Sussman, M.A., Koch, W.J.: Animal models of heart failure: a scientific statement from the American heart association. Am. Heart Assoc. Counc. Basic Cardiovasc. Sci. Counc. Clin. Cardiol. Counc. Funct. Genomics Transl. Biol. 111, 131–150 (2012)Google Scholar
  4. 4.
    Smaill, B.H., Zhao, J., Trew, M.L.: Three-dimensional impulse propagation in myocardium: arrhythmogenic mechanisms at the tissue level. Circ. Res. 112, 834–848 (2013)CrossRefGoogle Scholar
  5. 5.
    Kawara, T., Derksen, R., de Groot, J.R., Coronel, R., Tasseron, S., Linnenbank, A.C., Hauer, R.N.W., Kirkels, H., Janse, M.J., de Bakker, J.M.T.: Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation 104, 3069–3075 (2001)CrossRefGoogle Scholar
  6. 6.
    Pertsov, A.M.: Scale of geometric structures responsible for discontinuous propagation in myocardial tissue. In: Spooner, P.M., Joyner, R.W., Jalife, J. (eds.) Discontinuous Conduction in the Heart, pp. 273–293. Futura Press, Armonk (1997)Google Scholar
  7. 7.
    Tanaka, K., Zlochiver, S., Vikstrom, K.L., Yamazaki, M., Moreno, J., Klos, M., Zaitsev, A.V., Vaidyanathan, R., Auerbach, D.S., Landas, S., Guiraudon, G., Jalife, J., Berenfeld, O., Kalifa, J.: Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ. Res. 101, 839–847 (2007)CrossRefGoogle Scholar
  8. 8.
    TenTusscher, K.H.W.J., Panfilov, A.V.: Influence of diffuse fibrosis on wave propagation in human ventricular tissue. Europace 9, vi38–vi45 (2007)Google Scholar
  9. 9.
    Cingolani, O.H., Yang, X.-P., Cavasin, M.A., Carretero, O.A.: Increased systolic performance with diastolic dysfunction in adult spontaneously hypertensive rats. Hypertension 41, 249–254 (2003)CrossRefGoogle Scholar
  10. 10.
    Slama, M., Ahn, J., Varagic, J., Susic, D., Frohlich, E.D.: Long-term left ventricular echocardiographic follow-up of SHR and WKY rats: effects of hypertension and age. Am. J. Physiol. Heart Circ. Physiol. 286, H181–H185 (2004)CrossRefGoogle Scholar
  11. 11.
    Rutherford, S.L., Trew, M.L., Sands, G.B., LeGrice, I.J., Smaill, B.H.: High-resolution 3-dimensional reconstruction of the infarct border zone: impact of structural remodeling on electrical activation. Circ. Res. 111, 301–311 (2012)CrossRefGoogle Scholar
  12. 12.
    Seidel, T., Draebing, T., Seemann, G., Sachse, F.B.: A semi-automatic approach for segmentation of three-dimensional microscopic image stacks. Funct. Imaging Model. Heart 7945, 300–307 (2013)CrossRefGoogle Scholar
  13. 13.
    Jähne, B.: Digital Image Processing. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Hoare, C.A.R.: Quicksort. Comput. J. 5, 10–16 (1962)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Faber, G.M., Rudy, Y.: Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys. J. 78, 2392–2404 (2000)CrossRefGoogle Scholar
  16. 16.
    LeGrice, I.J., Pope, A.J., Sands, G.B., Whalley, G., Doughty, R.N., Smaill, B.H.: Progression of myocardial remodeling and mechanical dysfunction in the spontaneously hypertensive rat. Am. J. Physiol. Heart Circ. Physiol. 303, H1353–H1365 (2012)CrossRefGoogle Scholar
  17. 17.
    Boluyt, M.: Matrix gene expression and decompensated heart failure: the aged SHR model. Cardiovasc. Res. 46, 239–249 (2000)CrossRefGoogle Scholar
  18. 18.
    Jansen, J.A., van Veen, T.A.B., de Jong, S., van der Nagel, R., van Stuijvenberg, L., Driessen, H., Labzowski, R., Oefner, C.M., Bosch, A.A., Nguyen, T.Q., Goldschmeding, R., Vos, M.A., de Bakker, J.M.T., van Rijen, H.V.M.: Reduced Cx43 expression triggers increased fibrosis due to enhanced fibroblast activity. Circ. Arrhythmia Electrophysiol. 5, 380–390 (2012)CrossRefGoogle Scholar
  19. 19.
    Van Rijen, H.V.M., Eckardt, D., Degen, J., Theis, M., Ott, T., Willecke, K., Jongsma, H.J., Opthof, T., de Bakker, J.M.T.: Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43. Circulation 109, 1048–1055 (2004)CrossRefGoogle Scholar
  20. 20.
    Schwab, B.C., Seemann, G., Lasher, R.A., Torres, N.S., Wulfers, E.M., Arp, M., Carruth, E.D., Bridge, J.H.B., Sachse, F.B.: Quantitative analysis of cardiac tissue including fibroblasts using three-dimensional confocal microscopy and image reconstruction: towards a basis for electrophysiological modeling. IEEE Trans. Med. Imaging 32, 862–872 (2013)CrossRefGoogle Scholar
  21. 21.
    Dodt, H.-U., Leischner, U., Schierloh, A., Jährling, N., Mauch, C.P., Deininger, K., Deussing, J.M., Eder, M., Zieglgänsberger, W., Becker, K.: Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007)CrossRefGoogle Scholar
  22. 22.
    Young, A.A., Legrice, I.J., Young, M.A., Smaill, B.H.: Extended confocal microscopy of myocardial laminae and collagen network. J. Microsc. 192, 139–150 (1998)CrossRefGoogle Scholar
  23. 23.
    Dickie, R., Bachoo, R.M., Rupnick, M.A., Dallabrida, S.M., Deloid, G.M., Lai, J., Depinho, R.A., Rogers, R.A.: Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy. Microvasc. Res. 72, 20–26 (2006)CrossRefGoogle Scholar
  24. 24.
    Seidel, T., Draebing, T., Seemann, G., Sachse, F.B.: A semi-automatic approach for segmentation of three-dimensional microscopic image stacks of cardiac tissue. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 300–307. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Saffitz, J.E., Kanter, H.L., Green, K.G., Tolley, T.K., Beyer, E.C.: Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ. Res. 74, 1065–1070 (1994)CrossRefGoogle Scholar
  26. 26.
    Khwaounjoo, P., Rutherford, S.L., Scrcek, Ma., LeGrice, I.J., Trew, M.L., Smaill, B.H.: Image-based motion correction for optical mapping of cardiac electrical activity. Ann. Biomed. Eng., 1–12 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Prashanna Khwaounjoo
    • 1
    Email author
  • Ian J. LeGrice
    • 2
  • Mark L. Trew
    • 1
  • Bruce H. Smaill
    • 1
    • 2
  1. 1.Auckland Bioengineering InstituteThe University of AucklandAucklandNew Zealand
  2. 2.Department of PhysiologyThe University of AucklandAucklandNew Zealand

Personalised recommendations