Data-Driven Model Reduction for Fast, High Fidelity Atrial Electrophysiology Computations

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)


Understanding and predicting atrial electrophysiology, for diagnosis and therapy planning purposes, calls for methods able to accurately represent the complex patterns of atrial electrical activity, and to produce very fast predictions to be suitable for use in the clinical practice. We apply a data-driven approach for the model reduction of an atrial cellular model. The reduced model predicts cellular action potentials (AP) in a simple form but is effective in capturing the physiological complexity of the original model. The model construction starts from an AP manifold learning which reduces the AP manifold dimension to 15, and continues with a regression model learning to predict the 15 components in the reduced AP manifold. The regression model has the potential to drastically improve the performance of atrial tissue-level electrophysiology (EP) modeling, enabling a 75 % reduction of the computational cost with the same time step and up to two order of magnitudes smaller computational time with larger time steps. The model is also capable of describing the restitution properties of the AP, as demonstrated in tests with varying diastolic intervals. This model has great potential use for real-time personalized atrial EP modeling, and the same modeling technique can be extended to the study of other excitable myocardial tissues.


Partial Little Square Regression Action Potential Duration Action Potential Amplitude Principal Component Analysis Component Diastolic Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aslanidi, O., Colman, M., Stott, J., Dobrzynski, H., Boyett, M., Holden, A., Zhang, H.: 3D virtual Human Atria: a computational platform for studying clinical atrial fibrillation. Prog Biophys. Mol. Biol. 107, 156–168 (2011)CrossRefGoogle Scholar
  2. 2.
    Atienza, F., Almendral, J., Moreno, J., Vaidyanathan, R., Talkachou, A., Kalifa, J., Arenal, A., Villacastin, J., Torrecilla, E., Sanchez, A., Ploutz-Snyder, R., Jalife, J., Berenfeld, O.: Activation of inward rectifier potassium channels accelerates atrial fibrillation in Humans: evidence for a reentrant mechanism. Circulation 114, 2434–2442 (2006)CrossRefGoogle Scholar
  3. 3.
    Boulakia, M., Schenone, E., Gerbeau, J.F.: Reduced-order modeling for cardiac electrophysiology. application to parameter identification. Int. J. Num. Meth. Biomed. Eng. 28(6–7), 727–744 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Courtemanche, M., Ramirez, R., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275, H301–H321 (1998)Google Scholar
  5. 5.
    FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)CrossRefGoogle Scholar
  6. 6.
    Friedman, J.H., Stuetzle, W.: Projection pursuit regression. J. Am. Stat. Assoc. 76, 817–823 (1981)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009)Google Scholar
  8. 8.
    Krummen, D., Bayer, J., Ho, J., Ho, G., Smetak, M., Clopton, P., Trayanova, N., Narayan, S.: Mechanisms of human atrial fibrillation initiation: clinical and computational studies of repolarization restitution and activation latency. Circ. Arrhythm. Electrophysiol. 5(6), 1149–1159 (2012)CrossRefGoogle Scholar
  9. 9.
    Mansi, T., Georgescu, B., Hussan, J., Hunter, P.J., Kamen, A., Comaniciu, D.: Data-driven reduction of a cardiac myofilament model. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 232–240. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Mitchell, C., Schaeffer, D.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65(5), 767–793 (2003)CrossRefGoogle Scholar
  11. 11.
    Rapaka, S., Mansi, T., Georgescu, B., Pop, M., Wright, G., Kamen, A., Comaniciu, D.: Lbm-ep: Lattice-Boltzmann method for fast cardiac electrophysiology simulation from 3D images. Med. Image Comput. Comput Assist. Interv. 15(2), 33–40 (2012)Google Scholar
  12. 12.
    Sobie, E.: Parameter sensitivity analysis in electrophysiological models using multivariable regression. Biophys. J. 96(4), 1264–1274 (2009)CrossRefGoogle Scholar
  13. 13.
    Kanu, U., Iravanian, S., Gilmour, R., Christini, D.: Control of action potential duration alternans in canine cardiac ventricular tissue. IEEE Trans. Biomed. Eng. 58(4), 894–904 (2011)CrossRefGoogle Scholar
  14. 14.
    Zettinig, O., Mansi, T., Neumann, D., Georgescu, B., Rapaka, S., et al.: Data-driven estimation of cardiac electrical diffusivity from 12-lead ECG signals. Med. Image Anal. 18(8), 1361–1376 (2014)CrossRefGoogle Scholar
  15. 15.
    Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Med. Imaging 27(11), 1668–1681 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Siemens Corporation, Corporate TechnologyImaging and Computer VisionPrincetonUSA

Personalised recommendations