Advertisement

Assessment of Septal Motion Abnormalities in Left Bundle Branch Block Patients Using Computer Simulations

  • Peter R. HuntjensEmail author
  • John Walmsley
  • Vincent Wu
  • Tammo Delhaas
  • Leon Axel
  • Joost Lumens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)

Abstract

Septal Flash (SF) is a rapid leftward – rightward motion of the septal wall during the isovolumic contraction phase that is frequently but not always observed in heart failure patients with left bundle branch block (LBBB). The goal of the present study is to evaluate the feasibility of detecting SF by assessing septal curvature both in patients with LBBB using MRI and in simulations using the CircAdapt model of the heart and circulation. In both patients and simulations, SF was characterized by a decrease of septal wall curvature and septum to lateral wall distance, followed by a rapid increase prior to aortic valve opening. Additionally, computer simulations revealed that SF can be explained by an intra-left ventricular (septal-to-lateral wall) activation delay. Reducing contractility in the left ventricular free wall abolished the rightward SF motion in LBBB. This finding suggests that lack of SF may indicate co-morbidities that can result in non-response to cardiac resynchronization therapy.

Keywords

Cardiac Resynchronization Therapy Left Bundle Branch Block Septal Wall Leave Ventricular Free Wall Septal Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dillon, J.C., Chang, S., Feigenbaum, H.: Echocardiographic manifestations of left bundle branch block. Circulation 49, 876–880 (1974)CrossRefGoogle Scholar
  2. 2.
    Sohal, M., Amraoui, S., Chen, Z., Sammut, E., Jackson, T., Wright, M., O’Neill, M., Gill, J., Carr-White, G., Rinaldi, C.A., Razavi, R.: Combined identification of septal flash and absence of myocardial scar by cardiac magnetic resonance imaging improves prediction of response to cardiac resynchronization therapy. J. Interv. Card. Electrophysiol. 40, 179–190 (2014)CrossRefGoogle Scholar
  3. 3.
    Leenders, G.E., Cramer, M.J., Bogaard, M.D., Meine, M., Doevendans, P.A., De Boeck, B.W.: Echocardiographic prediction of outcome after cardiac resynchronization therapy: conventional methods and recent developments. Heart Fail. Rev. 16, 235–250 (2011)CrossRefGoogle Scholar
  4. 4.
    Duckett, S.G., Camara, O., Ginks, M.R., Bostock, J., Chinchapatnam, P., Sermesant, M., Pashaei, A., Lambiase, P.D., Gill, J.S., Carr-White, G.S., Frangi, A.F., Razavi, R., Bijnens, B.H., Rinaldi, C.A.: Relationship between endocardial activation sequences defined by high-density mapping to early septal contraction (septal flash) in patients with left bundle branch block undergoing cardiac resynchronization therapy. Europace 14, 99–106 (2012)CrossRefGoogle Scholar
  5. 5.
    Duchateau, N., Sitges, M., Doltra, A., Fernandez-Armenta, J., Solanes, N., Rigol, M., Gabrielli, L., Silva, E., Barcelo, A., Berruezo, A., Mont, L., Brugada, J., Bijnens, B.: Myocardial motion and deformation patterns in an experimental swine model of acute LBBB/CRT and chronic infarct. Int. J. Cardiovasc. Imaging 30, 875–887 (2014)CrossRefGoogle Scholar
  6. 6.
    Leenders, G.E., Lumens, J., Cramer, M.J., De Boeck, B.W., Doevendans, P.A., Delhaas, T., Prinzen, F.W.: Septal deformation patterns delineate mechanical dyssynchrony and regional differences in contractility: analysis of patient data using a computer model. Circ. Heart Fail. 5, 87–96 (2012)CrossRefGoogle Scholar
  7. 7.
    Dellegrottaglie, S., Sanz, J., Poon, M., Viles-Gonzalez, J.F., Sulica, R., Goyenechea, M., Macaluso, F., Fuster, V., Rajagopalan, S.: Pulmonary hypertension: accuracy of detection with left ventricular septal-to-free wall curvature ratio measured at cardiac MR. Radiology 243, 63–69 (2007)CrossRefGoogle Scholar
  8. 8.
    Wu, V., Chyou, J.Y., Chung, S., Bhagavatula, S., Axel, L.: Evaluation of diastolic function by three-dimensional volume tracking of the mitral annulus with cardiovascular magnetic resonance: comparison with tissue Doppler imaging. J. Cardiovasc. Magn. Reson. 16, 71 (2014)CrossRefGoogle Scholar
  9. 9.
    Arts, T., Delhaas, T., Bovendeerd, P., Verbeek, X., Prinzen, F.W.: Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model. Am. J. Physiol. Heart Circ. Physiol. 288, H1943–H1954 (2005)CrossRefGoogle Scholar
  10. 10.
    Lumens, J., Delhaas, T., Kirn, B., Arts, T.: Three-wall segment (TriSeg) model describing mechanics and hemodynamics of ventricular interaction. Ann. Biomed. Eng. 37, 2234–2255 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Peter R. Huntjens
    • 1
    • 2
    Email author
  • John Walmsley
    • 1
  • Vincent Wu
    • 3
  • Tammo Delhaas
    • 1
  • Leon Axel
    • 3
  • Joost Lumens
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringCardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtThe Netherlands
  2. 2.L’Institut de Rythmologie et Modélisation Cardiaque (IHU-LIRYC)Université de BordeauxBordeauxFrance
  3. 3.Department of Radiology and MedicineNYU School of MedicineNew YorkUSA

Personalised recommendations