Advertisement

Image-Derived Human Left Ventricular Modelling with Fluid-Structure Interaction

  • Hao GaoEmail author
  • Colin Berry
  • Xiaoyu Luo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)

Abstract

In this study, we have developed a human left ventricular model using a hybrid immersed boundary- finite element description. The left ventricle model is built based on clinical cardiac magnetic resonance images, and completed with the inflow (left atrium) and outflow (aorta) tracts. The model is used to simulate the left ventricular dynamics with fully-coupled fluid structure interaction, with parameters optimised, and the results are in reasonably good agreement with the in vivo measurements.

Keywords

Cardiac Magnetic Resonance Fluid Structure Interaction Diastolic Filling Active Tension Left Ventricular Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

We are grateful for funding provided by the UK EPSRC (EP/I1029990), the British Heart Foundation (PG/14/64/31043, PG/11/2/28474).

References

  1. 1.
    Baillargeon, B., Rebelo, N., Fox, D.D., Taylor, R.L., Kuhl, E.: The living heart project: a robust and integrative simulator for human heart function. Eur. J. Mech.-A/Solid. 48, 38–47 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gao, H., Carrick, D., Berry, C., Griffith, B.E., Luo, X.Y.: Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method. IMA J. Appl. Math. 79, 978–1010 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Gao, H., Li, W.G., Cai, L., Berry, C., Luo, X.Y.: Parameter estimation of holzapfel-ogden law for healthy myocardium. J. Eng. Math. (2015, in press). doi: 10.1007/s10665-014-9740-3
  4. 4.
    Gao, H., Wang, H., Berry, C., Luo, X., Griffith, B.E.: Quasi-static image-based immersed boundary-finite element model of left ventricle under diastolic loading. Int. J. Numer. Methods Biomed. Eng. 30, 1199–1222 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Griffith, B., Luo, X.: Hybrid finite difference/finite element version of the immersed boundary method (submitted)Google Scholar
  6. 6.
    Griffith, B.E.: Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Eng. 28(3), 317–345 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Guccione, J., Moonly, S., Moustakidis, P., Costa, K., Moulton, M., Ratcliffe, M., Pasque, M.: Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: a finite element model study. Ann. Thorac. Surg. 71(2), 654–662 (2001)CrossRefGoogle Scholar
  8. 8.
    Hunter, P., McCulloch, A., Ter Keurs, H.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69(2–3), 289–331 (1998)CrossRefGoogle Scholar
  9. 9.
    Nash, M., Hunter, P.: Computational mechanics of the heart. J. Elast. 61(1), 113–141 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Niederer, S., Hunter, P., Smith, N.: A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophys. J. 90(5), 1697–1722 (2006)CrossRefGoogle Scholar
  11. 11.
    Nordsletten, D., Niederer, S., Nash, M., Hunter, P., Smith, N.: Coupling multi-physics models to cardiac mechanics. Prog. Biophys. Mol. Biol. 104(1), 77–88 (2011)CrossRefGoogle Scholar
  12. 12.
    Peskin, C.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2), 252–271 (1972)zbMATHCrossRefGoogle Scholar
  13. 13.
    Wang, H., Gao, H., Luo, X., Berry, C., Griffith, B., Ogden, R., Wang, T.: Structure-based finite strain modelling of the human left ventricle in diastole. Int. J. Numer. Methods Biomed. Eng. 29, 83–103 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Watanabe, H., Sugiura, S., Kafuku, H., Hisada, T.: Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophys. J. 87(3), 2074–2085 (2004)CrossRefGoogle Scholar
  15. 15.
    Zhang, Z., Sun, K., Saloner, D., Wallace, A., Ge, L., Baker, A., Guccione, J., Ratcliffe, M.: The benefit of enhanced contractility in the infarct borderzone: a virtual experiment. Front. Physiol. 3, 86 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK
  2. 2.Institute of Cardiovascular and Medical ScienceUniversity of GlasgowGlasgowUK

Personalised recommendations