Advertisement

Patient-Specific Biomechanical Modeling of Cardiac Amyloidosis – A Case Study

  • D. ChapelleEmail author
  • A. Felder
  • R. Chabiniok
  • A. Guellich
  • J.-F. Deux
  • T. Damy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)

Abstract

We present a patient-specific biomechanical modeling framework and an initial case study for investigating cardiac amyloidosis (CA). Our patient-specific heartbeat simulations are in good agreement with the data, and our model calibration indicates that the major effect of CA in the biophysical behavior lies in a dramatic increase of the passive stiffness. We also conducted a preliminary trial for predicting the effects of pharmacological treatments – which is an important clinical challenge – based on the model combined with a simple venous return representation. This requires further investigation and validation, albeit provides some valuable preliminary insight.

Keywords

Cardiac modeling Patient-specific Amyloidosis Heart failure 

Notes

Acknowledgments

The authors are very grateful to Philippe Moireau for valuable discussions and for the use of his numerical simulation software HeartLab, and also wish to thank Gabriel Valdes Alonzo (intern) for some helpful numerical verifications.

References

  1. 1.
    Caruel, M., et al.: Dimensional reductions of a cardiac model for effective validation and calibration. Biomech. Model. Mechan. 13(4), 897–914 (2014)CrossRefGoogle Scholar
  2. 2.
    Chabiniok, R., et al.: Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech. Model. Mechanobiol. 11(5), 609–630 (2012)CrossRefGoogle Scholar
  3. 3.
    Chapelle, D., et al.: Energy-preserving muscle tissue model: formulation and compatible discretizations. Int. J. Multiscale Comput. 10(2), 189–211 (2012)CrossRefGoogle Scholar
  4. 4.
    Damy, T., et al.: Role of natriuretic peptide to predict cardiac abnormalities in patients with hereditary transthyretin amyloidosis. Amyloid 20(4), 212–220 (2013)CrossRefGoogle Scholar
  5. 5.
    Frey, P., George, P.L.: Mesh Generation, 2nd edn. Wiley, New York (2008)zbMATHCrossRefGoogle Scholar
  6. 6.
    Gray Gilstrap, L., et al.: Predictors of survival to orthotopic heart transplant in patients with light chain amyloidosis. J. Hear. Lung Transplant. 33(2), 149–156 (2014)CrossRefGoogle Scholar
  7. 7.
    Koeppen, B.M., Stanton, B.A.: Berne and Levy Physiology, 6th edn. Mosby, Philadelphia (2009)Google Scholar
  8. 8.
    Koyama, J., Falk, R.H.: Prognostic significance of strain Doppler imaging in light-chain amyloidosis. J. Am. Coll. Cardiol. Imging 3(4), 333–342 (2010)CrossRefGoogle Scholar
  9. 9.
    Koyama, J., et al.: Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation 107(19), 2446–2452 (2003)CrossRefGoogle Scholar
  10. 10.
    Liu, D., et al.: Echocardiographic evaluation of systolic and diastolic function in patients with cardiac amyloidosis. Am. J. Cardiol. 108(4), 591–8 (2011)CrossRefGoogle Scholar
  11. 11.
    McCarthy, R.E., Kasper, E.K.: A review of the amyloidoses that infiltrate the heart. Clin. Cardiol. 21(8), 547–552 (1998)CrossRefGoogle Scholar
  12. 12.
    Roig, E., et al.: Outcomes of heart transplantation for cardiac amyloidosis: subanalysis of the Spanish registry for heart transplantation. Am. J. Transplant. 9(6), 1414–1419 (2009)CrossRefGoogle Scholar
  13. 13.
    Rueckert, D., et al.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  14. 14.
    Sermesant, M., et al.: Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med. Image Anal. 16(1), 201–215 (2012)CrossRefGoogle Scholar
  15. 15.
    Shi, W., et al.: A comprehensive cardiac motion estimation framework using both untagged and 3D tagged MR images based on non-rigid registration. IEEE Trans. Med. Imaging 31(6), 1263–1275 (2012)CrossRefGoogle Scholar
  16. 16.
    Syed, I.S., et al.: Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. J. Am. Coll. Cardiol. Imging 3(2), 155–164 (2010)CrossRefGoogle Scholar
  17. 17.
    Toussaint, N., et al.: An integrated platform for dynamic cardiac simulation and image processing: application to personalised tetralogy of Fallot simulation. In: Proceedings, Eurographics Workshop on Visual Computing for Biomedicine (2008)Google Scholar
  18. 18.
    Vikram, C.S.: Removing the diffraction halo effect in speckle photography of sinusoidal vibration. Appl. Opt. 29(25), 3572–3573 (1990)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • D. Chapelle
    • 1
    Email author
  • A. Felder
    • 1
  • R. Chabiniok
    • 1
    • 3
  • A. Guellich
    • 2
  • J.-F. Deux
    • 2
  • T. Damy
    • 2
  1. 1.Inria Saclay Ile-de-FranceMΞDISIM TeamPalaiseauFrance
  2. 2.Henri Mondor HospitalCréteilFrance
  3. 3.St. Thomas’ HospitalKing’s College LondonLondonUK

Personalised recommendations