Skip to main content

Data-Driven Feature Learning for Myocardial Segmentation of CP-BOLD MRI

Part of the Lecture Notes in Computer Science book series (LNIP,volume 9126)

Abstract

Cardiac Phase-resolved Blood Oxygen-Level-Dependent (CP-BOLD) MR is capable of diagnosing an ongoing ischemia by detecting changes in myocardial intensity patterns at rest without any contrast and stress agents. Visualizing and detecting these changes require significant post-processing, including myocardial segmentation for isolating the myocardium. But, changes in myocardial intensity pattern and myocardial shape due to the heart’s motion challenge automated standard CINE MR myocardial segmentation techniques resulting in a significant drop of segmentation accuracy. We hypothesize that the main reason behind this phenomenon is the lack of discernible features. In this paper, a multi scale discriminative dictionary learning approach is proposed for supervised learning and sparse representation of the myocardium, to improve the myocardial feature selection. The technique is validated on a challenging dataset of CP-BOLD MR and standard CINE MR acquired in baseline and ischemic condition across 10 canine subjects. The proposed method significantly outperforms standard cardiac segmentation techniques, including segmentation via registration, level sets and supervised methods for myocardial segmentation.

Keywords

  • Dictionary learning
  • CP-BOLD MR
  • CINE MR
  • Segmentation

The first two authors contributed equally to this work.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-20309-6_22
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-20309-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Aharon, M., et al.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE TSP 54(11), 4311–4322 (2006)

    Google Scholar 

  2. Bai, W., et al.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE TMI 32(7), 1302–1315 (2013)

    Google Scholar 

  3. Chan, T.F., et al.: Active contours without edges. IEEE TIP 10(2), 266–277 (2001)

    MATH  Google Scholar 

  4. Chang, L.-H., et al.: Achievable angles between two compressed sparse vectors under norm/distance constraints imposed by the restricted isometry property: a plane geometry approach. IEEE T Inf. Theory 59(4), 2059–2081 (2013)

    CrossRef  Google Scholar 

  5. Glocker, B., et al.: Dense image registration through MRFs and efficient linear programming. MIA 12(6), 731–741 (2008)

    Google Scholar 

  6. Huang, X., et al.: Contour tracking in echocardiographic sequences via sparse representation and dictionary learning. MIA 18, 253–271 (2014)

    Google Scholar 

  7. Li, C., et al.: Distance regularized level set evolution and its application to image segmentation. IEEE TIP 19(12), 3243–3254 (2010)

    Google Scholar 

  8. Ramirez, I., et al.: Classification and clustering via dictionary learning with structured incoherence and shared features. In: IEEE CVPR, pp. 3501–3508 (2010)

    Google Scholar 

  9. Rusu, C., et al.: Synthetic generation of myocardial bloodoxygen-level-dependent MRI time series via structural sparse decomposition modeling. IEEE TMI 7(33), 1422–1433 (2014)

    Google Scholar 

  10. Tavakoli, V., et al.: A survey of shape-based registration and segmentation techniques for cardiac images. CVIU 117, 966–989 (2013)

    Google Scholar 

  11. Tong, T., et al.: Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling. NeuroImage 76, 11–23 (2013)

    CrossRef  Google Scholar 

  12. Tropp, J.A., et al.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE T Inf. Theory 53(12), 4655–4666 (2007)

    MATH  MathSciNet  CrossRef  Google Scholar 

  13. Tsaftaris, S.A., et al.: A dynamic programming solution to tracking and elastically matching left ventricular walls in cardiac CINE MRI. In: IEEE ICIP, pp. 2980–2983 (2008)

    Google Scholar 

  14. Tsaftaris, S.A., et al.: Detecting myocardial ischemia at rest with cardiac phaseresolved blood oxygen leveldependent cardiovascular magnetic resonance. Circ.: Cardiovasc. Imaging 6(2), 311–319 (2013)

    Google Scholar 

  15. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric diffeomorphic image registration with the demons algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  16. Wright, J., et al.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)

    CrossRef  Google Scholar 

  17. Zhen, X., Wang, Z., Islam, A., Bhaduri, M., Chan, I., Li, S.: Direct estimation of cardiac bi-ventricular volumes with regression forests. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 586–593. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health under Grant 2R01HL091989-05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilkay Oksuz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mukhopadhyay, A., Oksuz, I., Bevilacqua, M., Dharmakumar, R., Tsaftaris, S.A. (2015). Data-Driven Feature Learning for Myocardial Segmentation of CP-BOLD MRI. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)