Advertisement

A Comprehensive Framework for the Characterization of the Complete Mitral Valve Geometry for the Development of a Population-Averaged Model

  • Amir H. Khalighi
  • Andrew Drach
  • Fleur M. ter Huurne
  • Chung-Hao Lee
  • Charles Bloodworth
  • Eric L. Pierce
  • Morten O. Jensen
  • Ajit P. Yoganathan
  • Michael S. SacksEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)

Abstract

Simulations of the biomechanical behavior of the Mitral Valve (MV) based on simplified geometric models are difficult to interpret due to significant intra-patient variations and pathologies in the MV geometry. Thus, it is critical to use a systematic approach to characterization and population-averaging of the patient-specific models. We introduce a multi-scale modeling framework for characterizing the entire MV apparatus geometry via a relatively small set of parameters. The leaflets and annulus are analyzed using a superquadric surface model superimposed with fine-scale filtered level-set field. Filtering of fine-scale features is performed in a spectral space to allow control of resolution, resampling and robust averaging. Chordae tendineae structure is modeled using a medial axis representation with superimposed filtered pointwise cross-sectional area field. The chordae topology is characterized using orientation and spatial distribution functions. The methodology is illustrated with the analysis of an ovine MV microtomography imaging data.

Keywords

Mitral Valve Mitral Valve Regurgitation Mitral Valve Leaflet Mitral Valve Annulus Mitral Valve Apparatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Research reported in this publication was supported by National Heart, Lung, and Blood Institute of the National Institutes of Health under award number R01HL119297. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

  1. 1.
    Guy, T.S., Hill, A.C.: Mitral valve prolapse. Annu. Rev. Med. 63, 277–292 (2012)CrossRefGoogle Scholar
  2. 2.
    Enriquez-Sarano, M., Akins, C.W., Vahanian, A.: Mitral regurgitation. The Lancet. 373(9672), 1382–1394 (2009)CrossRefGoogle Scholar
  3. 3.
    Kheradvar, A., Groves, E.M., Dasi, L.P., Alavi, S.H., Tranquillo, R., Grande-Allen, K.J., Simmons, C.A., et al.: Emerging trends in Heart valve engineering: part I solutions for future. Ann. Biomed. Eng. 43(4), 1–11 (2014)Google Scholar
  4. 4.
    Wang, Q., Sun, W.: Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann. Biomed. Eng. 41(1), 142–153 (2013)CrossRefGoogle Scholar
  5. 5.
    Votta, E., Caiani, E., Veronesi, F., Soncini, M., Montevecchi, F.M., Redaelli, A.: Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. R. Soc. Lond., A: Math. Phys. Eng. Sci. 3669(1879), 3411–3434 (2008)CrossRefGoogle Scholar
  6. 6.
    Mansi, T., Voigt, I., Georgescu, B., Zheng, X., Mengue, E.A., Hackl, M., Ionasec, R.I., Noack, T., Seeburger, J., Comaniciu, D.: An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med. Image Anal. 16(7), 1330–1346 (2012)CrossRefGoogle Scholar
  7. 7.
    Choi, A., Rim, Y., Mun, J.S., Kim, H.: A novel finite element-based patient-specific mitral valve repair: virtual ring annuloplasty. Bio-Med. Mater. Eng. 24(1), 341–347 (2012)Google Scholar
  8. 8.
    Kunzelman, K.S., Cochran, R.P., Chuong, C., Ring, W.S., Verrier, E.D., Eberhart, R.D.: Finite element analysis of the mitral valve. J. Heart Valve Dis. 2(3), 326–340 (1993)Google Scholar
  9. 9.
    Votta, E., Le, T.B., Stevanella, M., Fusini, L., Caiani, E.G., Redaelli, A., Sotiropoulos, F.: Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46(2), 217–228 (2013)CrossRefGoogle Scholar
  10. 10.
    Lee, C.-H., Oomen, P.J., Rabbah, J.P., Yoganathan, A., Gorman, R.C., Gorman III, J.H., Amini, R., Sacks, M.S.: A high-fidelity and micro-anatomically accurate 3D finite element model for simulations of functional mitral valve. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 416–424. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Swanson, W.M., Clark, R.E.: Dimensions and geometric relationships of the human aortic value as a function of pressure. Circ. Res. 35(6), 871–882 (1974)CrossRefGoogle Scholar
  12. 12.
    Haj-Ali, R., Marom, G., Zekry, S.B., Rosenfeld, M., Raanani, E.: A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling. J. Biomech. 45(14), 2392–2397 (2012)CrossRefGoogle Scholar
  13. 13.
    Ryan, L.P., Jackson, B.M., Eperjesi, T.J., Plappert, T.J., St John-Sutton, M., Gorman, R.C., Gorman, J.H.: A methodology for assessing human mitral leaflet curvature using real-time 3-dimensional echocardiography. J. Thorac. Cardiovasc. Surg. 136(3), 726–734 (2008)CrossRefGoogle Scholar
  14. 14.
    Pouch, A.M., Vergnat, M., McGarvey, J.R., Ferrari, G., Jackson, B.M., Sehgal, C.M., Yushkevich, P.A., Gorman, R.C., Gorman, J.H.: Statistical assessment of normal mitral annular geometry using automated three-dimensional echocardiographic analysis. Ann. Thorac. Surg. 97(1), 71–77 (2014)CrossRefGoogle Scholar
  15. 15.
    Yeong, M., Silbery, M., Finucane, K., Wilson, N.J., Gentles, J.L.: Mitral valve geometry in paediatric rheumatic mitral regurgitation. Pediatr. Cardiol. 36(4), 1–8 (2015)CrossRefGoogle Scholar
  16. 16.
    Rabbah, J.-P., Saikrishnan, N., Yoganathan, A.P.: A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann. Biomed. Eng. 41(2), 305–315 (2013)CrossRefGoogle Scholar
  17. 17.
    Siefert, A.W., Rabbah, J.P.M., Koomalsingh, K.J., Touchton, S.A., Saikrishnan, N., McGarvey, J.R., Gorman, R.C., Gorman, J.H., Yoganathan, A.P.: In vitro mitral valve simulator mimics systolic valvular function of chronic ischemic mitral regurgitation ovine model. Ann. Thorac. Surg. 95(3), 825–830 (2013)CrossRefGoogle Scholar
  18. 18.
    Lee, T.-C., Kashyap, R.L., Chong-Nam, C.: Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP: Graph. Models Image Process. 56(6), 462–478 (1994)Google Scholar
  19. 19.
    Jaklic, A., Leonardis, A., Solina, F.: Segmentation and Recovery of Superquadrics. Springer, The Netherlands (2000)zbMATHCrossRefGoogle Scholar
  20. 20.
    Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis. LNCS, vol. 630, pp. 105–116. Springer, Heidelberg (1978)CrossRefGoogle Scholar
  21. 21.
    Zhu, C.-H., Liu, Q.H., Shen, Y., Liu, L.: A high accuracy conformal method for evaluating the discontinuous Fourier transform. Prog. Electromagnet. Res. 109, 425–440 (2013)CrossRefGoogle Scholar
  22. 22.
    Greengard, L., June-Yub, L.: Accelerating the nonuniform fast Fourier transform. SIAM Rev. 46(3), 443–454 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Gröchenig, K.: Reconstruction algorithms in irregular sampling. Math. Comput. 59(199), 181–194 (1992)zbMATHCrossRefGoogle Scholar
  24. 24.
    Alhashim, I., Li, H., Xu, K., Cao, J., Ma, R., Zhang, H.: Topology-varying 3D shape creation via structural blending. ACM Trans. Graph. 33(4), 158 (2014)CrossRefGoogle Scholar
  25. 25.
    Berdajs, D., Lajos, P., Turina, M.I.: A new classification of the mitral papillary muscle. Med. Sci. Rev. 11(1), 18–21 (2005)Google Scholar
  26. 26.
    Sun, W., Martin, C., Pham, T.: Computational modeling of cardiac valve function and intervention. Ann. Rev. Biomed. Eng. 16, 53–76 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Amir H. Khalighi
    • 1
  • Andrew Drach
    • 1
  • Fleur M. ter Huurne
    • 2
  • Chung-Hao Lee
    • 1
  • Charles Bloodworth
    • 3
  • Eric L. Pierce
    • 3
  • Morten O. Jensen
    • 3
  • Ajit P. Yoganathan
    • 3
  • Michael S. Sacks
    • 1
    Email author
  1. 1.The University of Texas at AustinAustinUSA
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations