Advertisement

Sensitivity Analysis of Diffusion Tensor MRI in Simulated Rat Myocardium

  • Joanne BatesEmail author
  • Irvin Teh
  • Peter Kohl
  • Jürgen E. Schneider
  • Vicente Grau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)

Abstract

A model of cardiac microstructure and diffusion MRI is presented. The results show a good correspondence between the simulated and experimental measurements. A sensitivity analysis shows that the diffusivity has the greatest effect on both the apparent diffusion coefficient and the fractional anisotropy. The cross-sectional area of the cells is the next most important factor; the aspect ratio of the cell cross-section also affects the fractional anisotropy. Neither the cell length nor the volume fraction of cells has a marked effect.

Keywords

Diffusion MRI Model Rat Heart 

Notes

Acknowledgements

This work is supported by a BBSRC grant (BB/I012117/1), an EPSRC grant (EP/J013250/1) and by funding from the British Heart Foundation (BHF) Centre for Research Excellence. JES and PK are BHF Senior Basic Science Research Fellows (FS/11/50/29038; FS/12/17/29532). VG and PK are supported by BHF New Horizon Grant NH/13/30238. PK holds an ERC Advanced Grant (CardioNect). The authors acknowledge a Wellcome Trust Core Award (090532/Z/09/Z).

References

  1. 1.
    Waldman, L.K., Nosan, D., Villarreal, F., Covell, J.W.: Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ. Res. 63(3), 550–562 (1988)CrossRefGoogle Scholar
  2. 2.
    Kanai, A., Salama, G.: Optical mapping reveals that repolarization spreads anisotropically and is guided by fiber orientation in guinea pig hearts. Circ. Res. 77(4), 784–802 (1995)CrossRefGoogle Scholar
  3. 3.
    Maron, B.: Contemporary insights and strategies for risk stratification and prevention of sudden death in hypertrophic cardiomyopathy. Circulation 121(3), 445 (2010)CrossRefGoogle Scholar
  4. 4.
    Wu, M.T., Tseng, W.Y.I., Su, M.Y.M., Liu, C.P., Chiou, K.R., Wedeen, V.J., Reese, T.G., Yang, C.F.: Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction: Correlation with viability and wall motion. Circulation 114(10), 1036–45 (2006)CrossRefGoogle Scholar
  5. 5.
    Stejskal, E., Tanner, J.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965)CrossRefGoogle Scholar
  6. 6.
    Basser, P., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI. J. Mag. Res. B 111(3), 209 (1996)CrossRefGoogle Scholar
  7. 7.
    Hall, M., Alexander, D.: Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI. IEEE Trans. Med. Imag. 28(9), 1354 (2009)CrossRefGoogle Scholar
  8. 8.
    Wang, L., Zhu, Y.-M., Li, H., Liu, W., Magnin, I.E.: Simulation of diffusion anisotropy in DTI for virtual cardiac fiber structure. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 95–104. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. 9.
    Morris, M.: Factorial sampling plans for preliminary computational experiments. Technometrics 33(2), 161–174 (1991)CrossRefGoogle Scholar
  10. 10.
    Campolongo, F., Cariboni, J., Saltelli, A.: An effective screening design for sensitivity analysis of large models. Environ. Modell. Softw. 22(10), 1509–1518 (2007)CrossRefGoogle Scholar
  11. 11.
    Andrews, S.S., Addy, N.J., Brent, R., Arkin, A.P.: Detailed simulations of cell biology with Smoldyn 2.1. PLOS Comp. Biol. 6(3), e1000705 (2010)CrossRefGoogle Scholar
  12. 12.
    Satoh, H., Delbridge, L.M., Blatter, L.A., Bers, D.M.: Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophys. J. 70(3), 1494–1504 (1996)CrossRefGoogle Scholar
  13. 13.
    Chen, Y.-F., Redetzke, R.A., Sivertson, R.M., Coburn, T.S., Cypher, L.R., Gerdes, A.M.: Post-myocardial infarction left ventricular myocyte remodeling: are there gender differences in rats? Cardiovasc. Path. 20(5), e189–e195 (2011)CrossRefGoogle Scholar
  14. 14.
    Anversa, P., Ricci, R., Olivetti, G.: Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: a review. J. Am. Coll. Cardiol. 7(5), 1140–1149 (1986)CrossRefGoogle Scholar
  15. 15.
    McAdams, R.M., McPherson, R.J., Dabestani, N.M., Gleason, C.A., Juul, S.E.: Left ventricular hypertrophy is prevalent in sprague-dawley rats. Comp. Med. 60(5), 357–363 (2010)Google Scholar
  16. 16.
    Hales, P.W., Schneider, J.E., Burton, R.A.B., Wright, B.J., Bollensdorff, C., Kohl, P.: Histo-anatomical structure of the living isolated rat heart in two contraction states assessed by diffusion tensor MRI. Prog. Biophys. Mol. Biol. 110(2–3), 319 (2012)CrossRefGoogle Scholar
  17. 17.
    Joint research centre: Institute for the protection and security of the citizen (2014). http://ipsc.jrc.ec.europa.eu/?id=756

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Joanne Bates
    • 1
    Email author
  • Irvin Teh
    • 2
  • Peter Kohl
    • 3
    • 4
  • Jürgen E. Schneider
    • 2
  • Vicente Grau
    • 1
  1. 1.Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
  2. 2.Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
  3. 3.Department of Computer ScienceUniversity of OxfordOxfordUK
  4. 4.National Heart and Lung InstituteImperial College LondonLondonUK

Personalised recommendations