Revealing Differences in Anatomical Remodelling of the Systemic Right Ventricle

  • Ernesto ZacurEmail author
  • James Wong
  • Reza Razavi
  • Tal Geva
  • Gerald Greil
  • Pablo Lamata
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)


Cardiac remodelling, which refers to the change of the shape and size of the myocardium, is an adaptive response to developmental, disease and surgical processes. Traditional metrics of length, volume, aspect ratio or wall thickness are used in the clinic and in medical research, but have limited capabilities to describe complex structures such as the shape of cardiac ventricles. In this work we present an example of how computational analysis of cardiac anatomy can reveal more detailed description of developmental and remodelling patterns. The clinical problem is the analysis of the impact of two different surgical palliation techniques for hypoplastic left heart syndrome. Construction of a computational atlas and the statistical description of its variability are performed from the short axis stack of 128 subjects. Results unveil, for the first time in the literature, the differences in remodelling of the systemic right ventricle depending on the surgical palliation technique.


Computational anatomy Statistical shape analysis Systemic right ventricle Discriminative analysis 



This study has received funding by the Department of Health through the NIHR comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust, the Centre of Excellence in Medical Engineering (funded by the Wellcome Trust and EPSRC; grant number WT 088641/Z/09/Z) as well as the BHF Centre of Excellence (British Heart Foundation award RE/08/03). PL holds a Sir Henry Dale Fellowship funded jointly by the Wellcome Trust and the Royal Society (grant no. 099973/Z/12/Z).


  1. 1.
    Bellsham-Revell, H.R., Tibby, S.M., Bell, A.J., Witter, T., Simpson, J., Beerbaum, P., Anderson, D., Austin, C.B., Greil, G.F., Razavi, R.: Serial magnetic resonance imaging in hypoplastic left Heart syndrome gives valuable insight into ventricular and vascular adaptation. J. Am. Coll. Cardiol. 61(5), 561–570 (2013)CrossRefGoogle Scholar
  2. 2.
    Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B (Methodol.) 57, 289–300 (1995)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Fonseca, C.G., Backhaus, M., Bluemke, D.A., Britten, R.D., Do Chung, J., Cowan, B.R., et al.: The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011)CrossRefGoogle Scholar
  4. 4.
    Fratz, S., Chung, T., Greil, G.F., Samyn, M.M., Taylor, A.M., Valsangiacomo Buechel, E.R., Yoo, S.-J., Powell, A.J.: Guidelines and protocols for cardiovascular magnetic resonance in Children and Adults with congenital heart disease: SCMR expert consensus group on congenital Heart disease. J. Cardiovasc. Magn. Reson. 15(1), 51 (2013)CrossRefGoogle Scholar
  5. 5.
    Frommelt, P.C., Gerstenberger, E., Cnota, J.F., Cohen, M.S., Gorentz, J., Hill, K.D., et al.: Impact of initial shunt type on cardiac size and function in children with single right ventricle anomalies before the Fontan procedure: the single ventricle reconstruction extension trial. J. Am. Coll. Cardiol. 64(19), 2026–2035 (2014)CrossRefGoogle Scholar
  6. 6.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, San Diego (2013)Google Scholar
  7. 7.
    Good, P.I.: Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses. Springer, New York (2000). Springer Series in StatisticsCrossRefGoogle Scholar
  8. 8.
    Lamata, P., Niederer, S., Nordsletten, D., Barber, D.C., Roy, I., Hose, D.R., Smith, N.: An accurate, fast and robust method to generate patient-specific cubic Hermite meshes. Med. Image Anal. 15(6), 801–813 (2011)CrossRefGoogle Scholar
  9. 9.
    Lamata, P., Sinclair, M., Kerfoot, E., Lee, A., Crozier, A., Blazevic, B., et al.: An automatic service for the personalization of ventricular cardiac meshes. J. R. Soc. Interface 11(91), 20131023 (2014)CrossRefGoogle Scholar
  10. 10.
    Lewandowski, A.J., Augustine, D., Lamata, P., Davis, E.F., Lazdam, M., Francis, J., McCormick, K., et al.: Preterm Heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation 127(2), 197–206 (2013)CrossRefGoogle Scholar
  11. 11.
    Medrano-Gracia, P., Cowan, B.R., Ambale-Venkatesh, B., Bluemke, D.A., Eng, J., et al.: Left ventricular shape variation in asymptomatic populations: the multi-ethnic study of atherosclerosis. J. Cardiovasc. Magn. Reson. 16, 56 (2014)CrossRefGoogle Scholar
  12. 12.
    Olmos, S., Garcia, J., Jané, R., Laguna, P.: ECG signal compression plus noise filtering with truncated orthogonal expansions. Sig. Process. 79(1), 97–115 (1999)zbMATHCrossRefGoogle Scholar
  13. 13.
    Styner, M., Oguz, I., Xu, S., Pantazis, D., Gerig, G.: Statistical group differences in anatomical shape analysis using Hotelling T2 metric. In: Medical Imaging, International Society for Optics and Photonics, vol. 6512 (2007)Google Scholar
  14. 14.
    Swets, D., Weng, J.: Using discriminant Eigenfeatures for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 18, 831–836 (1996)CrossRefGoogle Scholar
  15. 15.
    Wong, J., Lamata, P., Rathod, R.H., Bertaud, S., Dedieu, N., et al.: Using cardiac magnetic resonance and computational modelling to assess the systemic right ventricle following different Norwood procedures: a dual centre study. J. Cardiovasc. Magn. Reson. 17(1), M12 (2015)CrossRefGoogle Scholar
  16. 16.
    Woolson, R.F., Clarke, W.R.: Statistical Methods for the Analysis of Biomedical Data. Wiley, New Jersey (2011)Google Scholar
  17. 17.
    Young, A.A., Cowan, B.R., Thrupp, S.F., Hedley, W.J., Dell’Italia, L.J.: Left ventricular mass and volume: fast calculation with guide-point modeling on mr images. Radiology 216(2), 597–602 (2000)CrossRefGoogle Scholar
  18. 18.
    Zhang, X., Cowan, B.R., Bluemke, D.A., Finn, J.P., Fonseca, C.G., Kadish, A.H., et al.: Atlas-based quantification of cardiac remodeling due to myocardial infarction. PLoS ONE 9(10), e110243 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ernesto Zacur
    • 1
    Email author
  • James Wong
    • 2
  • Reza Razavi
    • 2
  • Tal Geva
    • 3
  • Gerald Greil
    • 2
  • Pablo Lamata
    • 1
  1. 1.Department of Biomedical EngineeringKing’s College LondonLondonUK
  2. 2.Department of Imaging SciencesKing’s College LondonLondonUK
  3. 3.Boston Children’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations