Advertisement

An Ever-Developing Research Framework

  • Eris ChinellatoEmail author
  • Angel P. del Pobil
Chapter
Part of the Cognitive Systems Monographs book series (COSMOS, volume 28)

Abstract

This chapter presents a number of issues and developments related to possible extensions of the model in Chaps.  4,  5 and  6. Some aspects are controversial and need additional neuroscience data to be modeled, others would need a different robotic setup to be properly tested. Some ideas have simply not been implemented yet, or have been implemented only partially, and thus were not described in the main modeling framework.

Keywords

Dorsal Stream Precision Grip Ventral Stream fMRI Experiment Power Grip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amedi A, Malach R, Hendler T, Peled S, Zohary E (2001) Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4(3):324–330. doi: 10.1038/85201
  2. Antonelli M, Gibaldi A, Beuth F, Duran A, Canessa A, Chessa M, Solari F, del Pobil A, Hamker F, Chinellato E, Sabatini S (2014) A hierarchical system for a distributed representation of the peripersonal space of a humanoid robot. IEEE Trans Auton Mental Dev 6(4):259–273. doi: 10.1109/TAMD.2014.2332875
  3. Arbib MA, Billard A, Iacoboni M, Oztop E (2000) Synthetic brain imaging: grasping, mirror neurons and imitation. Neural Netw 13(8–9):975–997CrossRefGoogle Scholar
  4. Baud-Bovy G, Soechting JF (2002) Factors influencing variability in load forces in a tripod grasp. Exp Brain Res 143(1):57–66. doi: 10.1007/s00221-001-0966-8
  5. Begliomini C, Wall MB, Smith AT, Castiello U (2007) Differential cortical activity for precision and whole-hand visually guided grasping in humans. Eur J Neurosci 25(4):1245–1252. doi: 10.1111/j.1460-9568.2007.05365.x
  6. Biegstraaten M, Smeets JBJ, Brenner E (2006) The relation between force and movement when grasping an object with a precision grip. Exp Brain Res 171(3):347–357. doi: 10.1007/s00221-005-0271-z
  7. Binkofski F, Buccino G, Zilles K, Fink GR (2004) Supramodal representation of objects and actions in the human inferior temporal and ventral premotor cortex. Cortex 40(1):159–161CrossRefGoogle Scholar
  8. Bosco A, Breveglieri R, Chinellato E, Galletti C, Fattori P (2009) Influence of visual feedback on reaching activity in parietal area V6A. In: Annual meeting of the society for neuroscience, 2009Google Scholar
  9. Cant JS, Westwood DA, Valyear KF, Goodale MA (2005) No evidence for visuomotor priming in a visually guided action task. Neuropsychologia 43(2):216–226. doi: 10.1016/j.neuropsychologia.2004.11.008
  10. Cavina-Pratesi C, Monaco S, McAdam T, Milner D, Schenk T, Culham JC (2007) Which aspects of hand-preshaping does human AIP compute during visually guided actions? Evidence from event-related fMRI. In: Annual meeting of the society for neuroscienceGoogle Scholar
  11. Cavina-Pratesi C, Valyear KF, Culham JC, Köhler S, Obhi SS, Marzi CA, Goodale MA (2006) Dissociating arbitrary stimulus-response mapping from movement planning during preparatory period: evidence from event-related functional magnetic resonance imaging. J Neurosci 26(10):2704–2713. doi: 10.1523/JNEUROSCI.3176-05.2006
  12. Chinellato E, Antonelli M, Grzyb B, del Pobil A (2011) Implicit sensorimotor mapping of the peripersonal space by gazing and reaching. IEEE Trans Autonom Mental Dev 3(1):43–53. doi: 10.1109/TAMD.2011.2106781
  13. Chinellato E, del Pobil AP (2008) fRI, functional robotic imaging: Visualizing a robot brain. In: IEEE international conference on distributed human-machine systemsGoogle Scholar
  14. Chinellato E, Grzyb BJ, Marzocchi N, Bosco A, Fattori P, del Pobil AP (2010) The dorso-medial visual stream: from neural activation to sensorimotor interaction. Neurocomputing (In Press). doi: 10.1016/j.neucom.2010.07.029
  15. Cloutman LL (2013) Interaction between dorsal and ventral processing streams: where, when and how? Brain Lang 127(2):251–263. doi: 10.1016/j.bandl.2012.08.003
  16. Cotterill RM (2001) Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: possible implications for cognition, consciousness, intelligence and creativity. Prog Neurobiol 64(1):1–33MathSciNetCrossRefGoogle Scholar
  17. Craighero L, Fadiga L, Rizzolatti G, Umiltà C (1999) Action for perception: a motor-visual attentional effect. J Exp Psychol Hum Percept Perform 25(6):1673–1692CrossRefGoogle Scholar
  18. Craighero L, Bello A, Fadiga L, Rizzolatti G (2002) Hand action preparation influences the responses to hand pictures. Neuropsychologia 40(5):492–502CrossRefGoogle Scholar
  19. Creem-Regehr SH, Lee JN (2005) Neural representations of graspable objects: are tools special? Cogn Brain Res 22(3):457–469. doi: 10.1016/j.cogbrainres.2004.10.006
  20. Culham JC, Cavina-Pratesi C, Singhal A (2006) The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia 44(13):2668–2684. doi: 10.1016/j.neuropsychologia.2005.11.003
  21. Culham JC (2006) Functional neuroimaging: experimental design and analysis. In: Cabeza R, Kingstone A (eds) Handbook of functional neuroimaging of cognition. MIT Press, Cambridge, pp 53–82Google Scholar
  22. Dassonville P, Bala JK (2004) Perception, action, and Roelofs effect: a mere illusion of dissociation. PLoS Biol 2(11):e364. doi: 10.1371/journal.pbio.0020364
  23. Davare M, Andres M, Cosnard G, Thonnard JL, Olivier E (2006) Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J Neurosci 26(8):2260–2268. doi: 10.1523/JNEUROSCI.3386-05.2006
  24. Dearden AM, Demiris Y (2005) Learning forward models for robots. In: International joint conferences on artificial intelligence, pp 1440–1445Google Scholar
  25. Doya K (1999) What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw 12(7–8):961–974CrossRefGoogle Scholar
  26. Ehrsson HH, Fagergren A, Johansson RS, Forssberg H (2003) Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. J Neurophysiol 90(5):2978–2986. doi: 10.1152/jn.00958.2002
  27. Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H (2000) Cortical activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol 83(1):528–536Google Scholar
  28. Ernst MO, Banks MS, Bülthoff HH (2000) Touch can change visual slant perception. Nat Neurosci 3(1):69–73. doi: 10.1038/71140
  29. Fattori P, Raos V, Breveglieri R, Bosco A, Marzocchi N, Galletti C (2010) The dorsomedial pathway is not just for reaching: grasping neurons in the medial parieto-occipital cortex of the macaque monkey. J Neurosci 30(1):342–3490. http://dx.doi.org/0
  30. Franz VH, Fahle M, Bülthoff HH, Gegenfurtner KR (2001) Effects of visual illusions on grasping. J Exp Psychol Hum Percept Perform 27(5):1124–1144CrossRefGoogle Scholar
  31. Frey SH, Vinton D, Norlund R, Grafton ST (2005) Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Cogn Brain Res 23(2–3):397–405. doi: 10.1016/j.cogbrainres.2004.11.010
  32. Fukuda H, Fukumura N, Katayama M, Uno Y (2000) Relation between object recognition and formation of hand shape: a computational approach to human grasping movements. Syst Comput Jpn 31(12):11–22CrossRefGoogle Scholar
  33. Gentilucci M (2003) Object familiarity affects finger shaping during grasping of fruit stalks. Exp Brain Res 149(3):395–400. doi: 10.1007/s00221-003-1370-3
  34. Goodale MA (2008) Action without perception in human vision. Cogn Neuropsychol 25(7–8):891–919. doi: 10.1080/02643290801961984
  35. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25CrossRefGoogle Scholar
  36. Gordon AM, Westling G, Cole KJ, Johansson RS (1993) Memory representations underlying motor commands used during manipulation of common and novel objects. J Neurophysiol 69(6):1789–1796Google Scholar
  37. Greenwald HS, Knill DC, Saunders JA (2005) Integrating visual cues for motor control: a matter of time. Vis Res 45(15):1975–1989. doi: 10.1016/j.visres.2005.01.025
  38. Handlovsky I, Hansen S, Lee TD, Elliott D (2004) The Ebbinghaus illusion affects on-line movement control. Neurosci Lett 366(3):308–311. doi: 10.1016/j.neulet.2004.05.056
  39. Handy TC, Grafton ST, Shroff NM, Ketay S, Gazzaniga MS (2003) Graspable objects grab attention when the potential for action is recognized. Nat Neurosci 6(4):421–427, 431Google Scholar
  40. Hoeren M, Kaller CP, Glauche V, Vry MS, Rijntjes M, Hamzei F, Weiller C (2013) Action semantics and movement characteristics engage distinct processing streams during the observation of tool use. Exp Brain Res 229(2):243–260. doi: 10.1007/s00221-013-3610-5
  41. Hu Y, Osu R, Okada M, Goodale MA, Kawato M (2005) A model of the coupling between grip aperture and hand transport during human prehension. Exp Brain Res 167(2):301–304. dio: 10.1007/s00221-005-0111-1
  42. Jeannerod M (1999) Visuomotor channels: their integration in goal-directed prehension. Hum Mov Sci 18(2):201–218, doi: 10.1016/S0167-9457(99)00008-1
  43. Jiang J, Shen Y, Neilson PD (2002) A simulation study of the degrees of freedom of movement in reaching and grasping. Hum Mov Sci 21(5–6):881–904CrossRefGoogle Scholar
  44. Johansson RS, Westling G, Bäckström A, Flanagan JR (2001) Eye-hand coordination in object manipulation. J Neurosci 21(17):6917–6932Google Scholar
  45. Johnson-Frey SH, Newman-Norlund R, Grafton ST (2005) A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex 15(6):681–695. doi: 10.1093/cercor/bhh169
  46. Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727CrossRefGoogle Scholar
  47. Kwok RM, Braddick OJ (2003) When does the Titchener Circles illusion exert an effect on grasping? Two- and three-dimensional targets. Neuropsychologia 41(8):932–940CrossRefGoogle Scholar
  48. Lavie N (2005) Distracted and confused?: selective attention under load. Trends Cogn Sci 9(2):75–82. doi: 10.1016/j.tics.2004.12.004
  49. Lim B, Ra S, Park F (2005) Movement primitives, principal component analysis, and the efficient generation of natural motions. In: IEEE international conference on robotics and automation, pp 4630–4635Google Scholar
  50. Loftus A, Servos P, Goodale MA, Mendarozqueta N, Mon-Williams M (2004) When two eyes are better than one in prehension: monocular viewing and end-point variance. Exp Brain Res 158(3):317–327. doi: 10.1007/s00221-004-1905-2
  51. Metzinger T, Gallese V (2003) The emergence of a shared action ontology: building blocks for a theory. Conscious Cogn 12(4):549–571CrossRefGoogle Scholar
  52. Miall R (2003) Connecting mirror neurons and forward models. Neuroreport 14(16):1–3Google Scholar
  53. Mon-Williams M, Tresilian JR (1999) Some recent studies on the extraretinal contribution to distance perception. Perception 28(2):167–181CrossRefGoogle Scholar
  54. Mon-Williams M, Tresilian JR (2001) A simple rule of thumb for elegant prehension. Curr Biol 11(13):1058–1061CrossRefGoogle Scholar
  55. Murata A, Gallese V, Luppino G, Kaseda M, Sakata H (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol 83(5):2580–2601Google Scholar
  56. Nori F, Frezza R (2005) Control of a manipulator with a minimum number of motion primitives. In: IEEE international conference on robotics and automation, pp 2344–2349Google Scholar
  57. Ogawa K, Inui T, Sugio T (2006) Separating brain regions involved in internally guided and visual feedback control of moving effectors: an event-related fMRI study. Neuroimage 32(4):1760–1770. doi: 10.1016/j.neuroimage.2006.05.012
  58. Orban GA, Caruana F (2014) The neural basis of human tool use. Front Psychol 5:310. doi: 10.3389/fpsyg.2014.00310
  59. Perry CJ, Tahiri A, Fallah M (2014) Feature integration within and across visual streams occurs at different visual processing stages. J Vis 14(2). doi: 10.1167/14.2.10
  60. Picard N, Strick PL (2003) Activation of the supplementary motor area (SMA) during performance of visually guided movements. Cereb Cortex 13(9):977–986CrossRefGoogle Scholar
  61. Plewan T, Weidner R, Eickhoff SB, Fink GR (2012) Ventral and dorsal stream interactions during the perception of the müller-lyer illusion: evidence derived from fmri and dynamic causal modeling. J Cogn Neurosci 24(10):2015–2029CrossRefGoogle Scholar
  62. Pouget A, Sejnowski TJ (2001) Simulating a lesion in a basis function model of spatial representations: comparison with hemineglect. Psychol Rev 108(3):653–673CrossRefGoogle Scholar
  63. Quaney BM, Nudo RJ, Cole KJ (2005) Can internal models of objects be utilized for different prehension tasks? J Neurophysiol 93(4):2021–2027. doi: 10.1152/jn.00599.2004
  64. Ramnani N, Toni I, Passingham RE, Haggard P (2001) The cerebellum and parietal cortex play a specific role in coordination: a PET study. Neuroimage 14(4):899–911. doi: 10.1006/nimg.2001.0885
  65. Reichenbach A, Thielscher A, Peer A, Bülthoff HH, Bresciani JP (2014) A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements. Neuroimage 84:615–625. doi: 10.1016/j.neuroimage.2013.09.024
  66. Rice NJ, Tunik E, Cross ES, Grafton ST (2007) On-line grasp control is mediated by the contralateral hemisphere. Brain Res 1175:76–84. doi: 10.1016/j.brainres.2007.08.009
  67. Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31(6):889–901CrossRefGoogle Scholar
  68. Roy A, Paulignan Y, Meunier M, Boussaoud D (2002) Prehension movements in the macaque monkey: Effects of object size and location. Mach Learn 88(3):1491–1499Google Scholar
  69. Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1997) The TINS lecture. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20(8):350–357CrossRefGoogle Scholar
  70. Salimi I, Hollender I, Frazier W, Gordon AM (2000) Specificity of internal representations underlying grasping. J Neurophysiol 84(5):2390–2397Google Scholar
  71. Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7(5):430–440CrossRefGoogle Scholar
  72. Schenk T, Ellison A, Rice N, Milner AD (2005) The role of V5/MT+ in the control of catching movements: an rTMS study. Neuropsychologia 43(2):189–198. doi: 10.1016/j.neuropsychologia.2004.11.006
  73. Servos P, Carnahan H, Fedwick J (2000) The visuomotor system resists the horizontal-vertical illusion. J Mot Behav 32(4):400–404CrossRefGoogle Scholar
  74. Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing: a foundation for motor learning. MIT Press, CambridgeGoogle Scholar
  75. Shikata E, Hamzei F, Glauche V, Koch M, Weiller C, Binkofski F, Büchel C (2003) Functional properties and interaction of the anterior and posterior intraparietal areas in humans. Eur J Neurosci 17(5):1105–1110CrossRefGoogle Scholar
  76. Shmuelof L, Zohary E (2005) Dissociation between ventral and dorsal fMRI activation during object and action recognition. Neuron 47(3):457–470. doi: 10.1016/j.neuron.2005.06.034
  77. Smeets JBJ, Brenner E, Biegstraaten M (2002) Independent control of the digits predicts an apparent hierarchy of visuomotor channels in grasping. Behav Brain Res 136(2):427–432CrossRefGoogle Scholar
  78. Stöttinger E, Perner J (2006) Dissociating size representation for action and for conscious judgment: Grasping visual illusions without apparent obstacles. Conscious Cogn 15(2):269–284. doi: 10.1016/j.concog.2005.07.004
  79. Sugio T, Inui T, Matsuo K, Matsuzawa M, Glover GH, Nakai T (1999) The role of the posterior parietal cortex in human object recognition: a functional magnetic resonance imaging study. Neurosci Lett 276(1):45–48CrossRefGoogle Scholar
  80. Sugio T, Ogawa K, Inui T (2003a) Multiple action representations of familiar objects with handles: an fMRI study. In: European conference on visual perceptionGoogle Scholar
  81. Sugio T, Ogawa K, Inui T (2003b) Neural correlates of semantic effects on grasping familiar objects. Neuroreport 14(18):2297–2301. doi: 10.1097/01.wnr.0000092474.09492.3a
  82. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, StuttgartGoogle Scholar
  83. Tankus A, Fried I (2012) Visuomotor coordination and motor representation by human temporal lobe neurons. J Cogn Neurosci 24(3):600–610CrossRefGoogle Scholar
  84. Tanné-Gariépy J, Rouiller EM, Boussaoud D (2002) Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: evidence for largely segregated visuomotor pathways. Exp Brain Res 145(1):91–103. doi: 10.1007/s00221-002-1078-9
  85. Ulloa A, Bullock D (2003) A neural network simulating human reach-grasp coordination by continuous updating of vector positioning commands. Neural Netw 16(8):1141–1160. doi: 10.1016/S0893-6080(03)00079-0
  86. Ulloa A, Bullock D, Rhodes BJ (2003) Adaptive force generation for precision-grip lifting by a spectral timing model of the cerebellum. Neural Netw 16(5–6):521–528. doi: 10.1016/S0893-6080(03)00094-7
  87. Vainio L, Ellis R, Tucker M, Symes E (2007) Local and global affordances and manual planning. Exp Brain Res 179(4):583–594. doi: 10.1007/s00221-006-0813-z
  88. Valyear KF, CavinaspsPratesi C, Stiglick AJ, Culham JC (2007) Does tool-related fMRI activity within the intraparietal sulcus reflect the plan to grasp? Neuroimage 36(Suppl 2):T94–T108. doi: 10.1016/j.neuroimage.2007.03.031
  89. van de Kamp C, Zaal FTJM (2007) Prehension is really reaching and grasping. Exp Brain Res 182(1):27–34. doi: 10.1007/s00221-007-0968-2
  90. Verhoef BE, Vogels R, Janssen P (2011) Synchronization between the end stages of the dorsal and the ventral visual stream. J Neurophysiol 105(5):2030–2042. doi: 10.1152/jn.00924.2010
  91. Westwood DA, Dubrowski A, Carnahan H, Roy EA (2000) The effect of illusory size on force production when grasping objects. Exp Brain Res 135(4):535–543Google Scholar
  92. Westwood DA, Goodale MA (2003) Perceptual illusion and the real-time control of action. Spat Vis 16(3–4):243–254Google Scholar
  93. Wokke ME, Scholte HS, Lamme VAF (2014) Opposing dorsal/ventral stream dynamics during figure-ground segregation. J Cogn Neurosci 26(2):365–379CrossRefGoogle Scholar
  94. Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3(Suppl):1212–1217. doi: 10.1038/81497
  95. Yoon EY, Humphreys GW (2007) Dissociative effects of viewpoint and semantic priming on action and semantic decisions: evidence for dual routes to action from vision. Q J Exp Psychol: Colchester 60(4):601–623. doi: 10.1080/17470210600701007
  96. Zanon M, Busan P, Monti F, Pizzolato G, Battaglini PP (2010) Cortical connections between dorsal and ventral visual streams in humans: evidence by tms/eeg co-registration. Brain Topogr 22(4):307–317. doi: 10.1007/s10548-009-0103-8
  97. Zatsiorsky VM, Latash ML, Gao F, Shim JK (2004) The principle of superposition in human prehension. Robotica 22(2):231–234. doi: 10.1017/S0263574703005344

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of ComputingUniversity of LeedsLeedsUK
  2. 2.Department of ICCJaume I UniversityCastellónSpain

Personalised recommendations