The Neuroscience of Action and Perception

  • Eris ChinellatoEmail author
  • Angel P. del Pobil
Part of the Cognitive Systems Monographs book series (COSMOS, volume 28)


The visual cortex of humans and other primates is composed of two main information pathways, called ventral stream and dorsal stream in relation to their location in the brain. The traditional distinction (Ungerleider and Mishkin 1982; Goodale and Milner 1992) talks about the ventral “what” and the dorsal “where/how” visual pathways. In fact, the ventral stream is devoted to perceptual analysis of the visual input, such as in recognition, categorization, assessment tasks. The dorsal stream is instead concerned with providing the subject the ability of interacting with its environment in a fast, effective and reliable way. This second stream is directly involved in estimating position, shape and orientation of target objects for reaching and grasping purposes. The tasks performed by the two streams, their duality and interaction, constitute the neuroscientific basis of the research described in this book, and this chapter is devoted to a detailed explanation of the related concepts.


Transcranial Magnetic Stimulation Lateral Geniculate Nucleus Posterior Parietal Cortex Dorsal Stream Ventral Stream 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams DL, Zeki S (2001) Functional organization of macaque V3 for stereoscopic depth. J Neurophysiol 86(5):2195–2203Google Scholar
  2. Ansuini C, Santello M, Massaccesi S, Castiello U (2006) Effects of end-goal on hand shaping. J Neurophysiol 95(4):2456–2465. doi: 10.1152/jn.01107.2005 Google Scholar
  3. Ansuini C, Tognin V, Turella L, Castiello U (2007b) Distractor objects affect fingers’ angular distances but not fingers’ shaping during grasping. Exp Brain Res 178(2):194–205. doi: 10.1007/s00221-006-0723-0 Google Scholar
  4. Backus BT, Fleet DJ, Parker AJ, Heeger DJ (2001) Human cortical activity correlates with stereoscopic depth perception. J Neurophysiol 86(4):2054–2068Google Scholar
  5. Baizer JS, Ungerleider LG, Desimone R (1991) Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci 11(1):168–190Google Scholar
  6. Bar M, Tootell RB, Schacter DL, Greve DN, Fischl B, Mendola JD, Rosen BR, Dale AM (2001) Cortical mechanisms specific to explicit visual object recognition. Neuron 29(2):529–535Google Scholar
  7. Barlow JS (2002) The cerebellum and adaptive control. Cambridge University Press, CambridgeGoogle Scholar
  8. Begliomini C, Wall MB, Smith AT, Castiello U (2007) Differential cortical activity for precision and whole-hand visually guided grasping in humans. Eur J Neurosci 25(4):1245–1252. doi: 10.1111/j.1460-9568.2007.05365.x Google Scholar
  9. Binkofski F, Dohle C, Posse S, Stephan KM, Hefter H, Seitz RJ, Freund HJ (1998) Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study. Neurology 50(5):1253–1259Google Scholar
  10. Binkofski F, Buxbaum LJ (2013) Two action systems in the human brain. Brain Lang 127(2):222–229. doi: 10.1016/j.bandl.2012.07.007 Google Scholar
  11. Blakemore SJ, Sirigu A (2003) Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res 153(2):239–245. doi: 10.1007/s00221-003-1597-z Google Scholar
  12. Borra E, Belmalih A, Calzavara R, Gerbella M, Murata A, Rozzi S, Luppino G (2007) Cortical connections of the macaque anterior intraparietal (AIP) area. Cereb Cortex 18(5):1094–1111Google Scholar
  13. Bremmer F, Schlack A, Duhamel JR, Graf W, Fink GR (2001) Space coding in primate posterior parietal cortex. Neuroimage 14(1 Pt 2):S46–S51. doi: 10.1006/nimg.2001.0817 Google Scholar
  14. Bremmer F, Klam F, Duhamel JR, Hamed SB, Graf W (2002) Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16(8):1569–1586Google Scholar
  15. Brouwer GJ, van Ee R, Schwarzbach J (2005) Activation in visual cortex correlates with the awareness of stereoscopic depth. J Neurosci 25(45):10403–10413. doi: 10.1523/JNEUROSCI.2408-05.2005Google Scholar
  16. Bullier J (2001) Integrated model of visual processing. Brain Res Rev 36(2–3):96–107Google Scholar
  17. Bülthoff HH, Edelman SY, Tarr MJ (1995) How are three-dimensional objects represented in the brain? Cereb Cortex 5(3):247–260Google Scholar
  18. Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44(13):2594–2606. doi: 10.1016/j.neuropsychologia.2005.10.011 Google Scholar
  19. Buxbaum L, Branch Coslett H (1997) Subtypes of optic ataxia: reframing the disconnection account. Neurocase 3:159–166Google Scholar
  20. Castiello U (2005) The neuroscience of grasping. Nat Rev Neurosci 6(9):726–736. doi: 10.1038/nrn1744 Google Scholar
  21. Castiello U, Begliomini C (2008) The cortical control of visually guided grasping. Neuroscientist 14(2):157–170. doi: 10.1177/1073858407312080 Google Scholar
  22. Cavina-Pratesi C, Goodale MA, Culham JC (2007a) fMRI reveals a dissociation between grasping and perceiving the size of real 3D objects. PLoS ONE 2(5):e424. doi: 10.1371/journal.pone.0000424 Google Scholar
  23. Cavina-Pratesi C, Monaco S, McAdam T, Milner D, Schenk T, Culham JC (2007b) Which aspects of hand-preshaping does human AIP compute during visually guided actions? Evidence from event-related fMRI. In: Annual meeting of the society for neuroscienceGoogle Scholar
  24. Chalupa LM, Werner JS (eds) (2003) The visual neurosciences. MIT PressGoogle Scholar
  25. Chao LL, Martin A (2000) Representation of manipulable man-made objects in the dorsal stream. Neuroimage 12(4):478–484. doi: 10.1006/nimg.2000.0635 Google Scholar
  26. Choi HJ, Zilles K, Mohlberg H, Schleicher A, Fink GR, Armstrong E, Amunts K (2006) Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. J Comp Neurol 495(1):53–69. doi: 10.1002/cne.20849 Google Scholar
  27. Christel MI, Billard A (2002) Comparison between macaques’ and humans’ kinematics of prehension: the role of morphological differences and control mechanisms. Behav Brain Res 131(1–2):169–184Google Scholar
  28. Cloutman LL (2013) Interaction between dorsal and ventral processing streams: where, when and how? Brain Lang 127(2):251–263. doi: 10.1016/j.bandl.2012.08.003 Google Scholar
  29. Clower DM, Dum RP, Strick PL (2005) Basal ganglia and cerebellar inputs to ‘AIP’. Cereb Cortex 15(7):913–920. doi: 10.1093/cercor/bhh190 Google Scholar
  30. Cohen NR, Cross ES, Tunik E, Grafton ST, Culham JC (2009) Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: a tms approach. Neuropsychologia 47(6):1553–1562. doi: 10.1016/j.neuropsychologia.2008.12.034 Google Scholar
  31. Creem SH, Proffitt DR (2001) Grasping objects by their handles: a necessary interaction between cognition and action. J Exp Psychol Hum Percept Perform 27(1):218–228Google Scholar
  32. Culham JC (2001) How neurons become BOLD? Trends Cogn Sci 5(10):416Google Scholar
  33. Culham JC, Danckert SL, DeSouza JFX, Gati JS, Menon RS, Goodale MA (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res 153(2):180–189. doi: 10.1007/s00221-003-1591-5 Google Scholar
  34. Culham JC (2004) Human brain imaging reveals a parietal area specialized for grasping. In: Kanwisher N, Duncan J (eds) Functional neuroimaging of visual cognition: attention and performance XX. Oxford University Press, Oxford, pp 417–438Google Scholar
  35. Culham JC, Cavina-Pratesi C, Singhal A (2006) The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia 44(13):2668–2684. doi: 10.1016/j.neuropsychologia.2005.11.003 Google Scholar
  36. Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16(2):205–212. doi: 10.1016/j.conb.2006.03.005 Google Scholar
  37. Cumming BG, DeAngelis GC (2001) The physiology of stereopsis. Annu Rev Neurosci 24:203–238. doi: 10.1146/annurev.neuro.24.1.203 Google Scholar
  38. Darling S, Della Sala S, Logie RH, Cantagallo A (2006) Neuropsychological evidence for separating components of visuospatial working memory. J Neurol 253(2):176–180. doi: 10.1007/s00415-005-0944-3 Google Scholar
  39. Davare M, Andres M, Cosnard G, Thonnard JL, Olivier E (2006) Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J Neurosci 26(8):2260–2268. doi: 10.1523/JNEUROSCI.3386-05.2006 Google Scholar
  40. Davare M, Zénon A, Pourtois G, Desmurget M, Olivier E (2012) Role of the medial part of the intraparietal sulcus in implementing movement direction. Cereb Cortex 22(6):1382–1394. doi: 10.1093/cercor/bhr210 Google Scholar
  41. de Vries SC, Kappers AM, Koenderink JJ (1994) Influence of surface attitude and curvature scaling on discrimination of binocularly presented curved surfaces. Vision Res 34(18):2409–2423Google Scholar
  42. DeAngelis GC, Cumming BG, Newsome WT (1998) Cortical area MT and the perception of stereoscopic depth. Nature 394(6694):677–680. doi: 10.1038/29299 Google Scholar
  43. Debowy DJ, Ghosh S, Ro JY, Gardner EP (2001) Comparison of neuronal firing rates in somatosensory and posterior parietal cortex during prehension. Exp Brain Res 137(3–4):269–291Google Scholar
  44. Denys K, Vanduffel W, Fize D, Nelissen K, Peuskens H, Essen DV, Orban GA (2004) The processing of visual shape in the cerebral cortex of human and nonhuman primates: a functional magnetic resonance imaging study. J Neurosci 24(10):2551–2565. doi: 10.1523/JNEUROSCI.3569-03.2004 Google Scholar
  45. Derbyshire N, Ellis R, Tucker M (2005) The potentiation of two components of the reach-to-grasp action during object categorisation in visual memory. ACTA Psychol (Amsterdam) 122:74–98. doi: 10.1016/j.actpsy.2005.10.004 Google Scholar
  46. Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91(1):176–180Google Scholar
  47. Durand JB, Nelissen K, Joly O, Wardak C, Todd JT, Norman JF, Janssen P, Vanduffel W, Orban GA (2007) Anterior regions of monkey parietal cortex process visual 3D shape. Neuron 55(3):493–505. doi: 10.1016/j.neuron.2007.06.040 Google Scholar
  48. Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H (2000) Cortical activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol 83(1):528–536Google Scholar
  49. Ellison A, Cowey A (2009) Differential and co-involvement of areas of the temporal and parietal streams in visual tasks. Neuropsychologia 47(6):1609–1614. doi: 10.1016/j.neuropsychologia.2008.12.013 Google Scholar
  50. Farah MJ (2004) Visual agnosia. MIT PressGoogle Scholar
  51. Felleman DJ, Essen DCV (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47Google Scholar
  52. Ferrera VP, Nealey TA, Maunsell JH (1992) Mixed parvocellular and magnocellular geniculate signals in visual area V4. Nature 358(6389):756–761. doi: 10.1038/358756a0
  53. Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308(5722):662–667. doi: 10.1126/science.1106138 Google Scholar
  54. Fogassi L, Luppino G (2005) Motor functions of the parietal lobe. Curr Opin Neurobiol 15(6):626–631. doi: 10.1016/j.conb.2005.10.015 Google Scholar
  55. Frey SH, Vinton D, Norlund R, Grafton ST (2005) Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Cogn Brain Res 23(2–3):397–405. doi: 10.1016/j.cogbrainres.2004.11.010 Google Scholar
  56. Gallese V (2007) The “conscious” dorsal stream: embodied simulation and its role in space and action conscious awareness. Psychedelic 13(1):1–20Google Scholar
  57. Gallese V, Craighero L, Fadiga L, Fogassi L (1999) Perception through action. Psyche 5(21):1Google Scholar
  58. Ganel T, Goodale MA (2003) Visual control of action but not perception requires analytical processing of object shape. Nature 426(6967):664–667. doi: 10.1038/nature02156
  59. Gardner EP, Debowy DJ, Ro JY, Ghosh S, Babu KS (2002) Sensory monitoring of prehension in the parietal lobe: a study using digital video. Behav Brain Res 135(1–2):213–224Google Scholar
  60. Gattass R, Nascimento-Silva S, Soares JGM, Lima B, Jansen AK, Diogo ACM, Farias MF, Botelho MMEP, Mariani OS, Azzi J, Fiorani M (2005) Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics. Philos Trans R Soc B: Biol Sci 360(1456):709–731. doi: 10.1098/rstb.2005.1629 Google Scholar
  61. Gegenfurtner K, Kiper D, Levitt J (1997) Functional properties of neurons in macaque area V3. J Neurophysiol 77(4):1906–1923Google Scholar
  62. Genovesio A, Ferraina S (2004) Integration of retinal disparity and fixation-distance related signals toward an egocentric coding of distance in the posterior parietal cortex of primates. J Neurophysiol 91(6):2670–2684. doi: 10.1152/jn.00712.2003 Google Scholar
  63. Gibson JJ (1979) The ecological approach to visual perception. Lawrence Erlbaum Associates, New Jersey, USAGoogle Scholar
  64. Glover S (2003) Optic ataxia as a deficit specific to the on-line control of actions. Neurosci Biobehav Rev 27(5):447–456Google Scholar
  65. Glover S, Miall RC, Rushworth MFS (2005) Parietal rTMS disrupts the initiation but not the execution of on-line adjustments to a perturbation of object size. J Cogn Neurosci 17(1):124–136. doi: 10.1162/0898929052880066 Google Scholar
  66. Goodale MA, Milner AD (2004) Sight unseen. Oxford University Press, OxfordGoogle Scholar
  67. Goodale MA, Milner AD, Jakobson LS, Carey DP (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349(6305):154–156. doi: 10.1038/349154a0 Google Scholar
  68. Goodale MA, Meenan JP, Bülthoff HH, Nicolle DA, Murphy KJ, Racicot CI (1994) Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr Biol 4(7):604–610Google Scholar
  69. Goodale MA (2008) Action without perception in human vision. Cogn Neuropsychol 25(7–8):891–919. doi: 10.1080/02643290801961984 Google Scholar
  70. Goodale MA, Haffenden AM (2003) Interactions between the dorsal and ventral streams of visual processing. Adv Neurol 93:249–267Google Scholar
  71. Goodale MA, Humphrey GK (1998) The objects of action and perception. Cognition 67(1–2):181–207Google Scholar
  72. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25Google Scholar
  73. Goodale MA, Westwood DA (2004) An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Curr Opin Neurobiol 14(2):203–211. doi: 10.1016/j.conb.2004.03.002 Google Scholar
  74. Gréa H, Pisella L, Rossetti Y, Desmurget M, Tilikete C, Grafton S, Prablanc C, Vighetto A (2002) A lesion of the posterior parietal cortex disrupts on-line adjustments during aiming movements. Neuropsychologia 40(13):2471–2480Google Scholar
  75. Grefkes C, Weiss PH, Zilles K, Fink GR (2002) Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and monkeys. Neuron 35(1):173–184Google Scholar
  76. Grefkes C, Ritzl A, Zilles K, Fink GR (2004) Human medial intraparietal cortex subserves visuomotor coordinate transformation. Neuroimage 23(4):1494–1506. doi: 10.1016/j.neuroimage.2004.08.031 Google Scholar
  77. Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207(1):3–17. doi: 10.1111/j.1469-7580.2005.00426.x Google Scholar
  78. Grill-Spector K, Kushnir T, Hendler T, Edelman S, Itzchak Y, Malach R (1998) A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum Brain Mapp 6(4):316–328Google Scholar
  79. Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24(1):187–203Google Scholar
  80. Grill-Spector K, Kushnir T, Hendler T, Malach R (2000) The dynamics of object-selective activation correlate with recognition performance in humans. Nat Neurosci 3(8):837–843. doi: 10.1038/77754 Google Scholar
  81. Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vision Res 41(10–11):1409–1422Google Scholar
  82. Grill-Spector K (2003) The neural basis of object perception. Curr Opin Neurobiol 13(2):159–166Google Scholar
  83. Hamilton AF, Grafton ST (2006) Goal representation in human anterior intraparietal sulcus. J Neurosci 26(4):1133–1137. doi: 10.1523/JNEUROSCI.4551-05.2006 Google Scholar
  84. Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? Nat Rev Neurosci 3(2):142–151. doi: 10.1038/nrn730 Google Scholar
  85. Hegdé J, Essen DCV (2005) Stimulus dependence of disparity coding in primate visual area V4. J Neurophysiol 93(1):620–626. doi: 10.1152/jn.00039.2004 Google Scholar
  86. Himmelbach M, Karnath HO (2005) Dorsal and ventral stream interaction: contributions from optic ataxia. J Cogn Neurosci 17(4):632–640. doi: 10.1162/0898929053467514 Google Scholar
  87. Hinkle DA, Connor CE (2002) Three-dimensional orientation tuning in macaque area V4. Nat Neurosci 5(7):665–670Google Scholar
  88. Hoeren M, Kaller CP, Glauche V, Vry MS, Rijntjes M, Hamzei F, Weiller C (2013) Action semantics and movement characteristics engage distinct processing streams during the observation of tool use. Exp Brain Res 229(2):243–260. doi: 10.1007/s00221-013-3610-5 Google Scholar
  89. Humphrey GK, Goodale MA, Jakobson LS, Servos P (1994) The role of surface information in object recognition: studies of a visual form agnosic and normal subjects. Perception 23(12):1457–1481Google Scholar
  90. Ikkai A, Jerde TA, Curtis CE (2011) Perception and action selection dissociate human ventral and dorsal cortex. J Cogn Neurosci 23(6):1494–1506. doi: 10.1162/jocn.2010.21499 Google Scholar
  91. James KH, Humphrey GK, Goodale MA (2001) Manipulating and recognizing virtual objects: where the action is. Can J Exp Psychol 55(2):111–120Google Scholar
  92. James T, Humphrey G, Gati J, Menon R, Goodale M (2002) Differential effects of viewpoint on object-driven activation in dorsal and ventral streams. Neuron 35(4):793–801Google Scholar
  93. James TW, Culham J, Humphrey GK, Milner AD, Goodale MA (2003) Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126(Pt 11):2463–2475. doi: 10.1093/brain/awg248 Google Scholar
  94. Jäncke L, Kleinschmidt A, Mirzazade S, Shah NJ, Freund HJ (2001) The role of the inferior parietal cortex in linking the tactile perception and manual construction of object shapes. Cereb Cortex 11(2):114–121Google Scholar
  95. Janssen P, Vogels R, Orban GA (2000) Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. Science 288(5473):2054–2056Google Scholar
  96. Jeannerod M (1997) The cognitive neuroscience of action. Blackwell, OxfordGoogle Scholar
  97. Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18(7):314–320Google Scholar
  98. Jeannerod M, Jacob P (2005) Visual cognition: a new look at the two-visual systems model. Neuropsychologia 43(2):301–312. doi: 10.1016/j.neuropsychologia.2004.11.016 Google Scholar
  99. Johnson-Frey SH, Newman-Norlund R, Grafton ST (2005) A distributed left hemisphere network active during planning of everyday tool use skills. Cereb Cortex 15(6):681–695. doi: 10.1093/cercor/bhh169 Google Scholar
  100. Kalaska JF, Cisek P, Gosselin-Kessiby N (2003) Mechanisms of selection and guidance of reaching movements in the parietal lobe. Adv Neurol 93:97–119Google Scholar
  101. Katsuyama N, Naganuma T, Sakata H, Taira M (2005) Coding of 3D curvature in the parietal cortex (area CIP) of macaque monkey. In: International symposium on autonomous minirobots for research and edutainment, pp 181–186Google Scholar
  102. Kawasaki M, Watanabe M, Okuda J, Sakagami M, Aihara K (2008) Human posterior parietal cortex maintains color, shape and motion in visual short-term memory. Brain Res 1213:91–97. doi: 10.1016/j.brainres.2008.03.037 Google Scholar
  103. Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T (2003) Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res 142:171–188Google Scholar
  104. Kourtzi Z, Erb M, Grodd W, Bülthoff HH (2003) Representation of the perceived 3-D object shape in the human lateral occipital complex. Cereb Cortex 13(9):911–920Google Scholar
  105. Kourtzi Z, Huberle E (2005) Spatiotemporal characteristics of form analysis in the human visual cortex revealed by rapid event-related fMRI adaptation. Neuroimage 28(2):440–452. doi: 10.1016/j.neuroimage.2005.06.017 Google Scholar
  106. Kourtzi Z, Kanwisher N (2000) Cortical regions involved in perceiving object shape. J Neurosci 20(9):3310–3318Google Scholar
  107. Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by the human lateral occipital complex. Science 293(5534):1506–1509. doi: 10.1126/science.1061133 Google Scholar
  108. Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12(4):217–230. doi: 10.1038/nrn3008 Google Scholar
  109. Lebedev MA, Messinger A, Kralik JD, Wise SP (2004) Representation of attended versus remembered locations in prefrontal cortex. PLoS Biol 2(11):e365. doi: 10.1371/journal.pbio.0020365 Google Scholar
  110. Lee TS (2003) Computations in the early visual cortex. J Physiol Paris 97(2–3):121–139. doi: 10.1016/j.jphysparis.2003.09.015 Google Scholar
  111. Lewis JW, Essen DCV (2000) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428(1):112–137Google Scholar
  112. Logothetis NK (1999) Vision: a window on consciousness. Sci Am 281(5):69–75Google Scholar
  113. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157. doi: 10.1038/35084005 Google Scholar
  114. Luppino G, Murata A, Govoni P, Matelli M (1999) Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp Brain Res 128(1–2):181–187Google Scholar
  115. Luppino G, Rizzolatti G (2000) The organization of the frontal motor cortex. News Physiol Sci 15:219–224Google Scholar
  116. Makuuchi M, Someya Y, Ogawa S, Takayama Y (2012) Hand shape selection in pantomimed grasping: interaction between the dorsal and the ventral visual streams and convergence on the ventral premotor area. Hum Brain Mapp 33(8):1821–1833. doi: 10.1002/hbm.21323 Google Scholar
  117. Malach R, Levy I, Hasson U (2002) The topography of high-order human object areas. Trends Cogn Sci 6(4):176–184Google Scholar
  118. Maunsell JH, (1992) Functional visual streams. Curr Opin Neurobiol 2(4):506–510Google Scholar
  119. Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, OxfordGoogle Scholar
  120. Milner AD, Perrett DI, Johnston RS, Benson PJ, Jordan TR, Heeley DW, Bettucci D, Mortara F, Mutani R, Terazzi E (1991) Perception and action in ‘visual form agnosia’. Brain 114(Pt 1B):405–428Google Scholar
  121. Milner AD, Paulignan Y, Dijkerman HC, Michel F, Jeannerod M (1999) A paradoxical improvement of misreaching in optic ataxia: new evidence for two separate neural systems for visual localization. Proc R Soc B: Biol Sci 266(1434):2225–2229Google Scholar
  122. Milner AD, Dijkerman HC, Pisella L, McIntosh RD, Tilikete C, Vighetto A, Rossetti Y (2001) Grasping the past. Delay can improve visuomotor performance. Curr Biol 11(23):1896–1901Google Scholar
  123. Milner AD, Goodale MA (1993) Visual pathways to perception and action. Prog Brain Res 95:317–337Google Scholar
  124. Moore C, Engel S (2001) Neural response to the perception of volume in the lateral occipital complex. Neuron 29(1):277–286Google Scholar
  125. Murata A, Fadiga L, Fogassi L, Gallese V, Raos V, Rizzolatti G (1997) Object representation in the ventral premotor cortex (area F5) of the monkey. J Neurophysiol 78(4):2226–2230Google Scholar
  126. Murata A, Gallese V, Luppino G, Kaseda M, Sakata H (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol 83(5):2580–2601Google Scholar
  127. Naganuma T, Nose I, Inoue K, Takemoto A, Katsuyama N, Taira M (2005) Information processing of geometrical features of a surface based on binocular disparity cues: an fMRI study. Neurosci Res 51(2):147–155. doi: 10.1016/j.neures.2004.10.009 Google Scholar
  128. Newman SD, Klatzky RL, Lederman SJ, Just MA (2005) Imagining material versus geometric properties of objects: an fMRI study. Cogn Brain Res 23(2–3):235–246. doi: 10.1016/j.cogbrainres.2004.10.020 Google Scholar
  129. Nguyenkim JD, DeAngelis GC (2003) Disparity-based coding of three-dimensional surface orientation by macaque middle temporal neurons. J Neurosci 23(18):7117–7128Google Scholar
  130. Orban GA, Fize D, Peuskens H, Denys K, Nelissen K, Sunaert S, Todd J, Vanduffel W (2003) Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia 41(13):1757–1768Google Scholar
  131. Orban GA, Claeys K, Nelissen K, Smans R, Sunaert S, Todd JT, Wardak C, Durand JB, Vanduffel W (2006a) Mapping the parietal cortex of human and non-human primates. Neuropsychologia 44(13):2647–2667. doi: 10.1016/j.neuropsychologia.2005.11.001 Google Scholar
  132. Orban GA, Janssen P, Vogels R (2006) Extracting 3D structure from disparity. Trends Neurosci 29(8):466–473. doi: 10.1016/j.tins.2006.06.012 Google Scholar
  133. Orban GA, Caruana F (2014) The neural basis of human tool use. Front Psychol 5:310. doi: 10.3389/fpsyg.2014.00310 Google Scholar
  134. Parker AJ (2004) From binocular disparity to the perception of stereoscopic depth. In: Chalupa LM, Werner JS (eds) The visual neurosciences, Chap 49. MIT Press, Cambridge, MA, pp 779–792Google Scholar
  135. Pascual-Leone A, Davey NJ, Rothwell J, Wasserman E, Puri BK (eds) (2002) Handbook of transcranial magnetic stimulation. ArnoldGoogle Scholar
  136. Passingham RE, Toni I (2001) Contrasting the dorsal and ventral visual systems: guidance of movement versus decision making. Neuroimage 14(1 Pt 2):S125–S131. doi: 10.1006/nimg.2001.0836 Google Scholar
  137. Perry CJ, Tahiri A, Fallah M (2014) Feature integration within and across visual streams occurs at different visual processing stages. J Vis 14(2): doi: 10.1167/14.2.10
  138. Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Tosoni A, Galletti C (2013) The human homologue of macaque area v6a. Neuroimage 82:517–530. doi: 10.1016/j.neuroimage.2013.06.026 Google Scholar
  139. Plewan T, Weidner R, Eickhoff SB, Fink GR (2012) Ventral and dorsal stream interactions during the perception of the müller-lyer illusion: evidence derived from fmri and dynamic causal modeling. J Cogn Neurosci 24(10):2015–2029Google Scholar
  140. Poggio GF, Gonzalez F, Krause F (1988) Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity. J Neurosci 8(12):4531–4550Google Scholar
  141. Ramnani N, Toni I, Passingham RE, Haggard P (2001) The cerebellum and parietal cortex play a specific role in coordination: a PET study. Neuroimage 14(4):899–911. doi: 10.1006/nimg.2001.0885 Google Scholar
  142. Raos V, Umiltà MA, Murata A, Fogassi L, Gallese V (2006) Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. J Neurophysiol 95(2):709–729. doi: 10.1152/jn.00463.2005 Google Scholar
  143. Red SD, Patel SS, Sereno AB (2012) Shape effects on reflexive spatial attention are driven by the dorsal stream. Vision Res 55:32–40. doi: 10.1016/j.visres.2011.12.007
  144. Reed CL, Shoham S, Halgren E (2004) Neural substrates of tactile object recognition: an fMRI study. Hum Brain Mapp 21(4):236–246. doi: 10.1002/hbm.10162 Google Scholar
  145. Reichenbach A, Thielscher A, Peer A, Bülthoff HH, Bresciani JP (2014) A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements. Neuroimage 84:615–625. doi: 10.1016/j.neuroimage.2013.09.024 Google Scholar
  146. Rice NJ, Tunik E, Grafton ST (2006) The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation. J Neurosci 26(31):8176–8182. doi: 10.1523/JNEUROSCI.1641-06.2006 Google Scholar
  147. Rice NJ, McIntosh RD, Schindler I, Mon-Williams M, Dmonet JF, Milner AD (2006a) Intact automatic avoidance of obstacles in patients with visual form agnosia. Exp Brain Res 174(1):176–188. doi: 10.1007/s00221-006-0435-5 Google Scholar
  148. Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkey II. Area F5 and the control of distal movements. Exp Brain Res 71(3):491–507Google Scholar
  149. Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3(2):131–141Google Scholar
  150. Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106(4):283–296Google Scholar
  151. Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends Neurosci 21:188–194Google Scholar
  152. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192. doi: 10.1146/annurev.neuro.27.070203.144230 Google Scholar
  153. Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31(6):889–901Google Scholar
  154. Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153(2):146–157. doi: 10.1007/s00221-003-1588-0 Google Scholar
  155. Ro JY, Debowy D, Ghosh S, Gardner EP (2000) Depression of neuronal firing rates in somatosensory and posterior parietal cortex during object acquisition in a prehension task. Exp Brain Res 135(1):1–11Google Scholar
  156. Roland PE, O’Sullivan B, Kawashima R (1998) Shape and roughness activate different somatosensory areas in the human brain. Proc Nat Acad Sci USA 95(6):3295–3300Google Scholar
  157. Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou GG, Matelli M, Luppino G (2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16(10):1389–1417. doi: 10.1093/cercor/bhj076 Google Scholar
  158. Rushworth MFS, Behrens TEJ, Johansen-Berg H (2006) Connection patterns distinguish 3 regions of human parietal cortex. Cereb Cortex 16(10):1418–1430. doi: 10.1093/cercor/bhj079 Google Scholar
  159. Rutschmann RM, Greenlee MW (2004) Bold response in dorsal areas varies with relative disparity level. Neuroreport 15(4):615–619Google Scholar
  160. Sakata H, Taira M, Murata A, Mine S (1995) Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb Cortex 5(5):429–438Google Scholar
  161. Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1997) The TINS lecture. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20(8):350–357Google Scholar
  162. Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y, Tsutsui K (1998) Neural coding of 3D features of objects for hand action in the parietal cortex of the monkey. Philos Trans R Soc B: Biol Sci 353(1373):1363–1373Google Scholar
  163. Sakata H, Taira M, Kusunoki M, Murata A, Tsutsui K, Tanaka Y, Shein WN, Miyashita Y (1999) Neural representation of three-dimensional features of manipulation objects with stereopsis. Exp Brain Res 128(1–2):160–169Google Scholar
  164. Sakata H, Tsutsui KI, Taira M (2005) Toward an understanding of the neural processing for 3D shape perception. Neuropsychologia 43(2):151–161. doi: 10.1016/j.neuropsychologia.2004.11.003 Google Scholar
  165. Schenk T, Ellison A, Rice N, Milner AD (2005) The role of V5/MT+ in the control of catching movements: an rTMS study. Neuropsychologia 43(2):189–198. doi: 10.1016/j.neuropsychologia.2004.11.006 Google Scholar
  166. Scherberger H, Anderson R (2004) Sensorimotor transformation in the posterior parietal cortex. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, CambridgeGoogle Scholar
  167. Schintu S, Hadj-Bouziane F, Dal Monte O, Knutson KM, Pardini M, Wassermann EM, Grafman J, Krueger F (2014) Object and space perception - is it a matter of hemisphere? Cortex 57:244–253. doi: 10.1016/j.cortex.2014.04.009 Google Scholar
  168. Sereno AB, Sereno ME, Lehky SR (2014) Recovering stimulus locations using populations of eye-position modulated neurons in dorsal and ventral visual streams of non-human primates. Front Integr Neurosci 8:28. doi: 10.3389/fnint.2014.00028 Google Scholar
  169. Shikata E, Tanaka Y, Nakamura H, Taira M, Sakata H (1996) Selectivity of the parietal visual neurones in 3D orientation of surface of stereoscopic stimuli. Neuroreport 7(14):2389–2394Google Scholar
  170. Shikata E, Hamzei F, Glauche V, Knab R, Dettmers C, Weiller C, Büchel C (2001) Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study. J Neurophysiol 85(3):1309–1314Google Scholar
  171. Shikata E, Hamzei F, Glauche V, Koch M, Weiller C, Binkofski F, Büchel C (2003) Functional properties and interaction of the anterior and posterior intraparietal areas in humans. Eur J Neurosci 17(5):1105–1110Google Scholar
  172. Shmuelof L, Zohary E (2005) Dissociation between ventral and dorsal fMRI activation during object and action recognition. Neuron 47(3):457–470. doi: 10.1016/j.neuron.2005.06.034 Google Scholar
  173. Singhal A, Culham JC, Chinellato E, Goodale MA (2007) Dual-task interference is greater in delayed grasping than in visually guided grasping. J Vis 7(5):1–12Google Scholar
  174. Snow JC, Pettypiece CE, McAdam TD, McLean AD, Stroman PW, Goodale MA, Culham JC (2011) Bringing the real world into the fmri scanner: repetition effects for pictures versus real objects. Sci Rep 1:130. doi: 10.1038/srep00130 Google Scholar
  175. Striem-Amit E, Dakwar O, Reich L, Amedi A (2012) The large-scale organization of “visual” streams emerges without visual experience. Cereb Cortex 22(7):1698–1709. doi: 10.1093/cercor/bhr253 Google Scholar
  176. Sugio T, Inui T, Matsuo K, Matsuzawa M, Glover GH, Nakai T (1999) The role of the posterior parietal cortex in human object recognition: a functional magnetic resonance imaging study. Neurosci Lett 276(1):45–48Google Scholar
  177. Sugio T, Ogawa K, Inui T (2003a) Multiple action representations of familiar objects with handles: An fMRI study. In: European conference on visual perceptionGoogle Scholar
  178. Taira M, Mine S, Georgopoulos AP, Murata A, Sakata H (1990) Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp Brain Res 83(1):29–36Google Scholar
  179. Taira M, Tsutsui KI, Jiang M, Yara K, Sakata H (2000) Parietal neurons represent surface orientation from the gradient of binocular disparity. J Neurophysiol 83(5):3140–3146Google Scholar
  180. Tankus A, Fried I (2012) Visuomotor coordination and motor representation by human temporal lobe neurons. J Cogn Neurosci 24(3):600–610Google Scholar
  181. Tarr MJ, Bülthoff HH (1998) Image-based object recognition in man, monkey and machine. Cognition 67(1–2):1–20Google Scholar
  182. Thoma V, Henson RN (2011) Object representations in ventral and dorsal visual streams: fmri repetition effects depend on attention and part-whole configuration. Neuroimage 57(2):513–525. doi: 10.1016/j.neuroimage.2011.04.035 Google Scholar
  183. Todd JT (2004) The visual perception of 3D shape. Trends in Cogn Sci 8(3):115–121. doi: 10.1016/j.tics.2004.01.006 Google Scholar
  184. Tootell RBH, Tsao D, Vanduffel W (2003) Neuroimaging weighs. In: humans meet macaques in “primate” visual cortex. J Neurosci 23(10):3981–3989Google Scholar
  185. Tootell RBH, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17(18):7060–7078Google Scholar
  186. Tsao DY, Vanduffel W, Sasaki Y, Fize D, Knutsen TA, Mandeville JB, Wald LL, Dale AM, Rosen BR, Essen DCV, Livingstone MS, Orban GA, Tootell RBH (2003) Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron 39(3):555–568Google Scholar
  187. Tsutsui K, Jiang M, Yara K, Sakata H, Taira M (2001) Integration of perspective and disparity cues in surface-orientation-selective neurons of area CIP. J Neurophysiol 86(6):2856–2867Google Scholar
  188. Tsutsui KI, Jiang M, Sakata H, Taira M (2003) Short-term memory and perceptual decision for three-dimensional visual features in the caudal intraparietal sulcus (area CIP). J Neurosci 23(13):5486–5495Google Scholar
  189. Tsutsui KI, Taira M, Sakata H (2005) Neural mechanisms of three-dimensional vision. Neurosci Res 51(3):221–229. doi: 10.1016/j.neures.2004.11.006 Google Scholar
  190. Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8(4):505–511. doi: 10.1038/nn1430 Google Scholar
  191. Tunik E, Rice NJ, Hamilton A, Grafton ST (2007) Beyond grasping: representation of action in human anterior intraparietal sulcus. Neuroimage 36(Suppl 2):T77–T86. doi: 10.1016/j.neuroimage.2007.03.026 Google Scholar
  192. Ungerleider L, Mishkin M (1982) Two cortical visual systems. In: Goodale M, Mansfield R (eds) Ingle D. Analysis of visual behavior, MIT Press, pp 549–586Google Scholar
  193. Valyear KF, Culham JC, Sharif N, Westwood D, Goodale MA (2006) A double dissociation between sensitivity to changes in object identity and object orientation in the ventral and dorsal visual streams: a human fMRI study. Neuropsychologia 44(2):218–228. doi: 10.1016/j.neuropsychologia.2005.05.004 Google Scholar
  194. Van Essen DC, Lewis JW, Drury HA, Hadjikhani N, Tootell RB, Bakircioglu M, Miller MI (2001) Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res 41(10–11):1359–1378Google Scholar
  195. Vanduffel W, Fize D, Peuskens H, Denys K, Sunaert S, Todd JT, Orban GA (2002) Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science 298(5592):413–415. doi: 10.1126/science.1073574 Google Scholar
  196. Vanni S, Dojat M, Warnking J, Delon-Martin C, Segebarth C, Bullier J (2004) Timing of interactions across the visual field in the human cortex. Neuroimage 21(3):818–828. doi: 10.1016/j.neuroimage.2003.10.035 Google Scholar
  197. Verhoef BE, Vogels R, Janssen P (2011) Synchronization between the end stages of the dorsal and the ventral visual stream. J Neurophysiol 105(5):2030–2042. doi: 10.1152/jn.00924.2010 Google Scholar
  198. Webster MJ, Bachevalier J, Ungerleider LG (1994) Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4(5):470–483Google Scholar
  199. Welchman AE, Deubelius A, Conrad V, Bülthoff HH, Kourtzi Z (2005) 3D shape perception from combined depth cues in human visual cortex. Nat Neurosci 8(6):820–827. doi: 10.1038/nn1461 Google Scholar
  200. Westwood DA, Danckert J, Servos P, Goodale MA (2002) Grasping two-dimensional images and three-dimensional objects in visual-form agnosia. Exp Brain Res 144(2):262–267. doi: 10.1007/s00221-002-1068-y Google Scholar
  201. Westwood DA, Goodale MA (2003a) A haptic size-contrast illusion affects size perception but not grasping. Exp Brain Res 153(2):253–259. doi: 10.1007/s00221-003-1599-x Google Scholar
  202. Whitwell RL, Milner AD, Goodale MA (2014) The two visual systems hypothesis: new challenges and insights from visual form agnosic patient df. Front Neurol 5:255. doi: 10.3389/fneur.2014.00255 Google Scholar
  203. Williams J, Whiten A, Suddendorf T, Perrett D (2001) Imitation, mirror neurons and autism. Neurosci Biobehav Rev 25:287–295Google Scholar
  204. Winkler A, Wright CE, Chubb C (2005) Dissociating the functions of visual pathways using equisalient stimuli. J Vis 5(8):362. doi: 10.1167/5.8.362 Google Scholar
  205. Wokke ME, Scholte HS, Lamme VAF (2014) Opposing dorsal/ventral stream dynamics during figure-ground segregation. J Cogn Neurosci 26(2):365–379Google Scholar
  206. Zachariou V, Klatzky R, Behrmann M (2014) Ventral and dorsal visual stream contributions to the perception of object shape and object location. J Cogn Neurosci 26(1):189–209Google Scholar
  207. Zanon M, Busan P, Monti F, Pizzolato G, Battaglini PP (2010) Cortical connections between dorsal and ventral visual streams in humans: Evidence by tms/eeg co-registration. Brain Topogr 22(4):307–317. doi: 10.1007/s10548-009-0103-8 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of ComputingUniversity of LeedsLeedsUK
  2. 2.Department of ICCJaume I UniversityCastellonSpain

Personalised recommendations