Skip to main content

Approximation and Exact Algorithms for Special Cases of Connected f-Factors

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9139))

Abstract

Given an edge weighted undirected graph \(G=(V,E)\) with \(|V|=n\), and a function \(f:V\rightarrow \mathbb {N}\), we consider the problem of finding a connected f-factor in G. In particular, for each constant \(c \ge 2\), we consider the case when \(f(v)\ge \frac{n}{c}\), for all v in V. We characterize the set of graphs that have a connected f-factor for \(f(v) \ge \frac{n}{3}\), for every v in V, and this gives polynomial time algorithm for the decision version of the problem. Extending the techniques we solve the minimization version. On the class of instances where the edge weights in G form a metric and \(f(v) \ge \frac{n}{c}\), c is a fixed value greater than 3, we give a PTAS. For each \(c \ge 3\) and \(\epsilon > 0\), our algorithm takes as input a metric weighted undirected graph G and a function \(f:V\rightarrow \mathbb {N}\) such that \(f(v) \ge \frac{n}{c}\), for every v in V, and computes a \((1+\epsilon )\)-approximation to the minimum weighted connected f-factor in polynomial time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anstee, R.P.: An algorithmic proof of tutte’s f-factor theorem. J. Algorithms 6(1), 112–131 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cheah, F., Corneil, D.G.: The complexity of regular subgraph recognition. Discrete Appl. Math. 27(1–2), 59–68 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cornelissen, K., Hoeksma, R., Manthey, B., Narayanaswamy, N.S., Rahul, C.S.: Approximability of connected factors. In: Kaklamanis, C., Pruhs, K. (eds.) WAOA 2013. LNCS, vol. 8447, pp. 120–131. Springer, Heidelberg (2014)

    Google Scholar 

  4. Cornuéjols, G.: General factors of graphs. J. Comb. Theory, Ser. B 45(2), 185–198 (1988)

    Article  MATH  Google Scholar 

  5. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012)

    Google Scholar 

  6. Dirac, G.A.: Some theorems on abstract graphs. Proc. London Math. Soc. s3–2(1), 69–81 (1952)

    Article  MathSciNet  Google Scholar 

  7. Edmonds, J.: Maximum matching and a polyhedron with 0,1 vertices. J. Res. Natl. Bur. Stand. 69B, 125–130 (1965)

    Article  MathSciNet  Google Scholar 

  8. Edmonds, J.: Paths, trees, and flowers. Canadian J. Math. 17(3), 449–467 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  9. Iida, T., Nishimura, T.: An ore-type condition for the existence of k-factors in graphs. Graphs Comb. 7(4), 353–361 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nash-Williams, CStJA: Edge-disjoint spanning trees of finite graphs. J. London Math. Soc. s1–36(1), 445–450 (1961)

    Article  MathSciNet  Google Scholar 

  11. Ore, O.: Note on hamilton circuits. American Math. Monthly 67, 55 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  12. Plummer, M.D.: Graph factors and factorization: 1985–2003: a survey. Discrete Math. 307(7), 791–821 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Tokuda, T.: Connected [a, b]-factors in k\(_{1, n}\)-free graphs containing an [a, b]-factor. Discrete Math. 207(13), 293–298 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Tucker, A.: A new applicable proof of the euler circuit theorem. American Math. Monthly 83, 638–640 (1976)

    Article  MATH  Google Scholar 

  15. Tutte, W.T.: The factors of graphs. Canadian J. Math. 4(3), 314–328 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tutte, W.T.: A short proof of the factor theorem for finite graphs. Canadian J. Math. 6(1954), 347–352 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tutte, W.T.: On the problem of decomposing a graph into n connected factors. J. London Math. Soc. s1–36(1), 221–230 (1961)

    Article  MathSciNet  Google Scholar 

  18. Vestergaard, P.D., Kouider, M.: Connected factors in graphs - a survey. Graphs Comb. 21(1), 1–26 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. West, D.B.: Introduction to Graph Theory. Prentice Hall, New Delhi (2001)

    Google Scholar 

  20. Williamson, D.B., Shmoys, P.D.: The Design of Approximation Algorithms. Cambridge University Press, New York (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr. Sebastian Ordyniak for pointing out Lemma 9. The authors acknowledge the support of the Indo-German Max Planck Center for Computer Science grant for the year 2013–2014 in the area of Algorithms and Complexity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Rahul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Narayanaswamy, N.S., Rahul, C.S. (2015). Approximation and Exact Algorithms for Special Cases of Connected f-Factors. In: Beklemishev, L., Musatov, D. (eds) Computer Science -- Theory and Applications. CSR 2015. Lecture Notes in Computer Science(), vol 9139. Springer, Cham. https://doi.org/10.1007/978-3-319-20297-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20297-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20296-9

  • Online ISBN: 978-3-319-20297-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics