Skip to main content

Performance in Educational Math Games: Is It a Question of Math Knowledge?

  • Chapter
Book cover Describing and Studying Domain-Specific Serious Games

Part of the book series: Advances in Game-Based Learning ((AGBL))

Abstract

In order to develop game-based learning environments (GBLEs) that accommodate to learners’ needs and individual differences, GBLEs can be enriched with learner models that describe learner profiles from which adaptive instruction can be offered during gameplay. Learner models can encompass several parameters or learner characteristics derived from measurements taken either prior to play (e.g., already available knowledge of the subject matter of which the GBLE is comprised) or during gameplay (i.e., learner behavior in the GBLE). This study makes a case for two skills which may be relevant from the perspective of adaptive gameplay, namely (1) the knowledge or skills with respect to the learning content and (2) the gaming skills. The current study investigates the joint inclusion of both gaming skills and domain knowledge creating learner profiles. In addition, this study sheds light on how performance during gameplay can be attributed to certain learner profiles. To investigate this, a commercially available 3D educational game for primary school children was offered to 53 children of the third grade. Learners’ behavior while playing in the GBLE was captured and logged. Prior to gameplay, math knowledge, and gaming skills were measured. Subsequently, learners’ in-game performance was measured. Results revealed that learners with high or low gaming skills can be distinguished into two learner profiles. More specific, learners with high gaming skills outperformed learners with low gaming skills in more complex mini-games. The findings of this study suggest that a learner’s gaming skills can be taken into account in developing learner profiles and hence in the design and development of GBLEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker, R. S., Habgood, J., Ainsworth, S. E., & Corbett, A. T. (2007). Modeling the acquisition of fluent skill in educational action games. In C. Conati, K. McCoy, & G. Paliouras (Eds.), User modelling 2007 (pp. 17–26). Corfu, Greece: Springer.

    Chapter  Google Scholar 

  • Graesser, A., Jackson, G., & McDaniel, B. (2007). AutoTutor holds conversations with learners that are responsive to their cognitive and emotional states. Educational Technology, 47, 19–22.

    Google Scholar 

  • Lopes, R., & Bidarra, R. (2011). Adaptivity challenges in games and simulations: A survey. IEEE Transactions on Computational Intelligence and AI in Games, 3(2), 85–99.

    Article  Google Scholar 

  • Maertens, M., Vandewaetere, M., Cornillie, F., & Desmet, P. (2014). From pen-and-paper content to educational math game content for children: A transfer with added difficulty. International Journal of Child-Computer Interaction, 2(2), 85–92. doi:10.1016/j.ijcci.2014.04.001.

    Article  Google Scholar 

  • Park, O., & Lee, H. (2003). Adaptive instructional systems. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (2nd ed., pp. 651–684). Bloomington, IN: The Associates for Educational Communications and Technology (AECT).

    Google Scholar 

  • Shute, V. J., Masduki, I., & Donmez, O. (2010). Conceptual framework for modeling, assessing and supporting competencies within game environments. Technology, Instruction, Cognition and Learning, 8(2), 137–161.

    Google Scholar 

  • Shute, V. J., & Zapata-Rivera, D. (2008). Adaptive technologies. In J. M. Spector, M. D. Merill, J. J. G. van Merriënboer, & M. Driscoll (Eds.), Handbook of research on educational communications and technology (3rd ed., pp. 277–294). Hillsdale, NY: Lawrence Erlbaum.

    Google Scholar 

  • Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22, 123–138.

    Article  Google Scholar 

  • Vandercruysse, S., Maertens, M., & Elen, J. (2015). Description of the educational games ‘Monkey Tales: The museum of Anything’. In L. Verschaffel (Ed.), Research on serious games: Descriptions and findings. New York, NY: Springer.

    Google Scholar 

  • Vandewaetere, M., Desmet, P., & Clarebout, G. (2011). The value of learner characteristics in the development of computer-based adaptive learning environments. Computers in Human Behavior, 27, 118–130.

    Article  Google Scholar 

Download references

Acknowledgement

This study is based on a research project funded by iMinds Flanders, called Games@School (2012–2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Maertens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maertens, M., Vandewaetere, M., Cornillie, F., Desmet, P. (2015). Performance in Educational Math Games: Is It a Question of Math Knowledge?. In: Torbeyns, J., Lehtinen, E., Elen, J. (eds) Describing and Studying Domain-Specific Serious Games. Advances in Game-Based Learning. Springer, Cham. https://doi.org/10.1007/978-3-319-20276-1_8

Download citation

Publish with us

Policies and ethics