Skip to main content

Purines in Parkinson’s: Adenosine A2A Receptors and Urate as Targets for Neuroprotection

  • Chapter
  • First Online:

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 10))

Abstract

Purines are essential constituents of all living cells. The nucleoside adenosine is not only a precursor of ATP and cyclic AMP but is also released by a wide variety of cells under various physiological and pathological conditions. In mammals, adenosine acts on four subtypes of guanine nucleotide binding protein (G protein)-coupled receptor (GPCR)—A1, A2A, A2B and A3. Among these the adenosine A2A receptor has emerged as a particularly attractive target of therapeutics development for Parkinson’s disease (PD), in part because it is highly expressed in brain regions innervated by the dopaminergic neurons that degenerate in PD. Urate (also known as uric acid —2,6,8-trioxypurine) is the most abundant plasma antioxidant as well as the end product of purine metabolism in humans. Emerging clinical, epidemiological, and laboratory evidence has identified urate as a potential neuroprotectant for the treatment of PD. The primary intent of this review is to explore the neuroprotective effects of adenosine receptor antagonists and urate and their therapeutic potential in PD with particular attention to epidemiological and preclinical findings linking these purines to PD and other neurodegenerative diseases. This review also summarizes current clinical development of purines as candidate neuroprotectants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham A, Drory VE (2014) Influence of serum uric acid levels on prognosis and survival in amyotrophic lateral sclerosis: a meta-analysis. J Neurol 261:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Ahlskog JE, Uitti RJ, Low PA et al (1995) No evidence for systemic oxidant stress in Parkinson’s or Alzheimer’s disease. Mov Disord 10:566–573

    Article  CAS  PubMed  Google Scholar 

  • Al-Khateeb E, Althaher A, Al-Khateeb M et al (2015) Relation between uric acid and Alzheimer’s disease in elderly Jordanians. J Alzheimers Dis 44:859–865

    Google Scholar 

  • Alonso A, Rodriguez LA, Logroscino G et al (2007) Gout and risk of Parkinson disease: a prospective study. Neurology 69:1696–1700

    Article  PubMed  Google Scholar 

  • Amaro S, Canovas D, Castellanos M et al (2010) The URICO-ICTUS study, a phase 3 study of combined treatment with uric acid and rtPA administered intravenously in acute ischaemic stroke patients within the first 4.5 h of onset of symptoms. Int J Stroke 5:325–328

    Article  PubMed  Google Scholar 

  • Ames BN, Cathcart R, Schwiers E et al (1981) Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A 78:6858–6862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Andreadou E, Nikolaou C, Gournaras F et al (2009) Serum uric acid levels in patients with Parkinson’s disease: their relationship to treatment and disease duration. Clin Neurol Neurosurg 111:724–728

    Article  PubMed  Google Scholar 

  • Annanmaki T, Muuronen A, Murros K (2007) Low plasma uric acid level in Parkinson’s disease. Mov Disord 22:1133–1137

    Article  PubMed  Google Scholar 

  • Arendash GW, Schleif W, Rezai-Zadeh K et al (2006) Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142:941–952

    Article  CAS  PubMed  Google Scholar 

  • Arendash GW, Mori T, Cao C et al (2009) Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer’s disease mice. J Alzheimers Dis 17:661–680

    CAS  PubMed  Google Scholar 

  • Armentero MT, Pinna A, Ferré S et al (2011) Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson’s disease. Pharmacol Ther 132:280–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ascherio A, Zhang SM, Hernan MA et al (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63

    Article  CAS  PubMed  Google Scholar 

  • Ascherio A, LeWitt PA, Xu K et al (2009) Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch Neurol 66:1460–1468

    Article  PubMed Central  PubMed  Google Scholar 

  • Atassi N, Berry J, Shui A et al (2014) The PRO-ACT database: design, initial analyses, and predictive features. Neurology 83:1719–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auinger P, Kieburtz K, McDermott MP (2010) The relationship between uric acid levels and Huntington’s disease progression. Mov Disord 25:224–228

    Article  PubMed Central  PubMed  Google Scholar 

  • Banks WA, Erickson MA (2009) The blood-brain barrier and immune function and dysfunction. Neurobiol Dis 37:26–32

    Article  PubMed  CAS  Google Scholar 

  • Beghi E, Pupillo E, Messina P et al (2011) Coffee and amyotrophic lateral sclerosis: a possible preventive role. Am J Epidemiol 174:1002–1008

    Article  PubMed  Google Scholar 

  • Belcastro V, Tozzi A, Tantucci M et al (2009) A2A adenosine receptor antagonists protect the striatum against rotenone-induced neurotoxicity. Exp Neurol 217:231–234

    Article  CAS  PubMed  Google Scholar 

  • Benedetti MD, Bower JH, Maraganore DM et al (2000) Smoking, alcohol, and coffee consumption preceding Parkinson’s disease: a case-control study. Neurology 55:1350–1358

    Article  CAS  PubMed  Google Scholar 

  • Benzie I, Strain J (1996) Uric acid: friend or foe? Redox Rep 2:231–234

    CAS  Google Scholar 

  • Bibbiani F, Oh JD, Petzer JP et al (2003) A2A antagonist prevents dopamine agonist-induced motor complications in animal models of Parkinson’s disease. Exp Neurol 184:285–294

    Article  CAS  PubMed  Google Scholar 

  • Blum D, Galas MC, Pintor A et al (2003) A dual role of adenosine A2A receptors in 3-nitropropionic acid-induced striatal lesions: implications for the neuroprotective potential of A2A antagonists. J Neurosci 23:5361–5369

    CAS  PubMed  Google Scholar 

  • Bogdanov M, Matson WR, Wang L et al (2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131:389–396

    Article  PubMed  Google Scholar 

  • Bos MJ, Koudstaal PJ, Hofman A et al (2006) Uric acid is a risk factor for myocardial infarction and stroke: the Rotterdam study. Stroke 37:1503–1507

    Article  CAS  PubMed  Google Scholar 

  • Brambilla R, Cottini L, Fumagalli M et al (2003) Blockade of A2A adenosine receptors prevents basic fibroblast growth factor-induced reactive astrogliosis in rat striatal primary astrocytes. Glia 43:190–194

    Article  PubMed  Google Scholar 

  • Brambilla L, Martorana F, Rossi D (2012) Astrocyte signaling and neurodegeneration: new insights into CNS disorders. Prion 7:28–36

    Article  PubMed  CAS  Google Scholar 

  • Brodie C, Blumberg PM, Jacobson KA (1998) Activation of the A2A adenosine receptor inhibits nitric oxide production in glial cells. FEBS Lett 429:139–142

    Article  CAS  PubMed  Google Scholar 

  • Brothers HM, Marchalant Y, Wenk GL (2010) Caffeine attenuates lipopolysaccharide-induced neuroinflammation. Neurosci Lett 480:97–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burton NC, Kensler TW, Guilarte TR (2006) In vivo modulation of the Parkinsonian phenotype by Nrf2. Neurotoxicology 27:1094–1100

    Article  CAS  PubMed  Google Scholar 

  • Can M, Varlibas F, Guven B et al (2013) Ischemia modified albumin and plasma oxidative stress markers in Alzheimer’s disease. Eur Neurol 69:377–380

    Article  CAS  PubMed  Google Scholar 

  • Cankurtaran M, Yesil Y, Kuyumcu ME et al (2012) Altered levels of homocysteine and serum natural antioxidants links oxidative damage to Alzheimer’s disease. J Alzheimers Dis 33:1051–1058

    Google Scholar 

  • Cao C, Cirrito JR, Lin X et al (2009) Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer’s disease transgenic mice. J Alzheimers Dis 17:681–697

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cao B, Guo X, Chen K et al (2013) Uric acid is associated with the prevalence but not disease progression of multiple system atrophy in Chinese population. J Neurol 260:2511–2515

    Article  CAS  PubMed  Google Scholar 

  • Carta AR, Kachroo A, Schintu N et al (2009) Inactivation of neuronal forebrain A receptors protects dopaminergic neurons in a mouse model of Parkinson’s disease. J Neurochem 111:1478–1489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caulfield MJ, Munroe PB, O’Neill D et al (2008) SLC2A9 is a high-capacity urate transporter in humans. PLoS Med 5:e197

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chamorro A, Obach V, Cervera A et al (2002) Prognostic significance of uric acid serum concentration in patients with acute ischemic stroke. Stroke 33:1048–1052

    Article  CAS  PubMed  Google Scholar 

  • Chamorro A, Amaro S, Castellanos M et al (2014) Safety and efficacy of uric acid in patients with acute stroke (URICO-ICTUS): a randomised, double-blind phase 2b/3 trial. Lancet Neurol 13:453–460

    Article  CAS  PubMed  Google Scholar 

  • Checkoway H, Powers K, Smith-Weller T et al (2002) Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155:732–738

    Article  PubMed  Google Scholar 

  • Chen Y, Vartiainen NE, Ying W et al (2001a) Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem 77:1601–1610

    Article  CAS  PubMed  Google Scholar 

  • Chen JF, Xu K, Petzer JP et al (2001b) Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC143

    CAS  PubMed  Google Scholar 

  • Chen PS, Peng GS, Li G et al (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 11:1116–1125

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Mosley TH, Alonso A et al (2009a) Plasma urate and Parkinson’s disease in the Atherosclerosis Risk in Communities (ARIC) study. Am J Epidemiol 169:1064–1069

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen PC, Vargas MR, Pani AK et al (2009b) Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: critical role for the astrocyte. Proc Natl Acad Sci U S A 106:2933–2938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen X, Ghribi O, Geiger JD (2010) Caffeine protects against disruptions of the blood-brain barrier in animal models of Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis 20:S127–S141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen X, Burdett TC, Desjardins CA et al (2013) Disrupted and transgenic urate oxidase alter urate and dopaminergic neurodegeneration. Proc Natl Acad Sci U S A 110:300–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen X, Guo X, Huang R et al (2014) Serum uric acid levels in patients with Alzheimer’s disease: a meta-analysis. PLoS One 9:e94084

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chou SY, Lee YC, Chen HM et al (2005) CGS 21680 attenuates symptoms of Huntington’s disease in a transgenic mouse model. J Neurochem 93:310–320

    Article  CAS  PubMed  Google Scholar 

  • Christen P, Peacock WC, Christen AE et al (1970) Urate oxidase in primate phylogenesis. Eur J Biochem 12:3–5

    Article  CAS  PubMed  Google Scholar 

  • Church WH, Ward VL (1994) Uric acid is reduced in the substantia nigra in Parkinson’s disease: effect on dopamine oxidation. Brain Res Bull 33:419–425

    Article  CAS  PubMed  Google Scholar 

  • Cipriani S, Desjardins CA, Burdett TC et al (2012a) Urate and its transgenic depletion modulate neuronal vulnerability in a cellular model of Parkinson’s disease. PLoS One 7:e37331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cipriani S, Desjardins CA, Burdett TC et al (2012b) Protection of dopaminergic cells by urate requires its accumulation in astrocytes. J Neurochem 123:172–181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cunha RA (2005) Neuroprotection by adenosine in the brain: from A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal 1:111–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daly JW, Butts-Lamb P, Padgett W (1983) Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol Neurobiol 3:69–80

    Article  CAS  PubMed  Google Scholar 

  • Davis JW, Grandinetti A, Waslien CI et al (1996) Observations on serum uric acid levels and the risk of idiopathic Parkinson’s disease. Am J Epidemiol 144:480–484

    Article  CAS  PubMed  Google Scholar 

  • de Lau LM, Koudstaal PJ, Hofman A et al (2005) Serum uric acid levels and the risk of Parkinson disease. Ann Neurol 58:797–800

    Article  PubMed  CAS  Google Scholar 

  • De Luca MA, Cauli O, Morelli M et al (2014) Elevation of striatal urate in experimental models of Parkinson’s disease: a compensatory mechanism triggered by dopaminergic nigrostriatal degeneration? J Neurochem 131:284–289

    Article  PubMed  CAS  Google Scholar 

  • de Mendonça A, Sebastiao AM, Ribeiro JA (2000) Adenosine: does it have a neuroprotective role after all? Brain Res Rev 33:258–274

    Article  PubMed  Google Scholar 

  • De Vera M, Rahman MM, Rankin J et al (2008) Gout and the risk of Parkinson’s disease: a cohort study. Arthritis Rheum 59:1549–1554

    Article  PubMed  Google Scholar 

  • Dehghan A, Kottgen A, Yang Q et al (2008) Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372:1953–1961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14:1189–1197

    Article  CAS  PubMed  Google Scholar 

  • D’Hooghe MB, Haentjens P, Nagels G et al (2012) Alcohol, coffee, fish, smoking and disease progression in multiple sclerosis. Eur J Neurol 19:616–624

    Article  PubMed  Google Scholar 

  • Du Y, Chen CP, Tseng CY et al (2007) Astroglia-mediated effects of uric acid to protect spinal cord neurons from glutamate toxicity. Glia 55:463–472

    Article  PubMed  Google Scholar 

  • Duan W, Ladenheim B, Cutler RG et al (2002) Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J Neurochem 80:101–110

    Article  CAS  PubMed  Google Scholar 

  • Ellrichmann G, Petrasch-Parwez E, Lee DH et al (2011) Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington’s disease. PLoS One 6:e16172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Erickson MA, Dohi K, Banks WA (2012) Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier. Neuroimmunomodulation 19:121–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eskelinen MH, Kivipelto M (2010) Caffeine as a protective factor in dementia and Alzheimer’s disease. J Alzheimers Dis 20:S167–S174

    CAS  PubMed  Google Scholar 

  • Eskelinen MH, Ngandu T, Tuomilehto J et al (2009) Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis 16:85–91

    CAS  PubMed  Google Scholar 

  • Euser SM, Hofman A, Westendorp RG et al (2009) Serum uric acid and cognitive function and dementia. Brain 132:377–382

    Article  CAS  PubMed  Google Scholar 

  • Facheris MF, Hicks AA, Minelli C et al (2011) Variation in the uric acid transporter gene SLC2A9 and its association with AAO of Parkinson’s disease. J Mol Neurosci 43:246–250

    Article  CAS  PubMed  Google Scholar 

  • Fall PA, Fredrikson M, Axelson O et al (1999) Nutritional and occupational factors influencing the risk of Parkinson’s disease: a case-control study in southeastern Sweden. Mov Disord 14:28–37

    Article  CAS  PubMed  Google Scholar 

  • Fiebich BL, Biber K, Lieb K et al (1996) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. Glia 18:152–160

    Article  CAS  PubMed  Google Scholar 

  • Fiebich BL, Butcher RD, Gebicke-Haerter PJ (1998) Protein kinase C-mediated regulation of inducible nitric oxide synthase expression in cultured microglial cells. J Neuroimmunol 92:170–178

    Article  CAS  PubMed  Google Scholar 

  • Filippo MD, Chiasserini D, Tozzi A et al (2010) Mitochondria and the link between neuroinflammation and neurodegeneration. J Alzheimers Dis 20:S369–S379

    PubMed  Google Scholar 

  • Fink JS, Kalda A, Ryu H et al (2004) Genetic and pharmacological inactivation of the adenosine A2A receptor attenuates 3-nitropropionic acid-induced striatal damage. J Neurochem 88:538–544

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Battig K, Holmen J et al (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    CAS  PubMed  Google Scholar 

  • Fujishita K, Ozawa T, Shibata K et al (2009) Grape seed extract acting on astrocytes reveals neuronal protection against oxidative stress via interleukin-6-mediated mechanisms. Cell Mol Neurobiol 29:1121–1129

    Article  PubMed  Google Scholar 

  • Gao Y, Phillis JW (1994) CGS 15943, an adenosine A2 receptor antagonist, reduces cerebral ischemic injury in the Mongolian gerbil. Life Sci 55:PL61–PL65

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Chen H, Choi HK et al (2008) Diet, urate, and Parkinson’s disease risk in men. Am J Epidemiol 167:831–838

    Article  PubMed Central  PubMed  Google Scholar 

  • Gerhard A, Pavese N, Hotton G et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Zhang QL, Zhang N et al (2012) Neuroprotection by urate on 6-OHDA-lesioned rat model of Parkinson’s disease: linking to Akt/GSK3beta signaling pathway. J Neurochem 123:876–885

    Article  CAS  PubMed  Google Scholar 

  • Gonsette RE, Sindic C, D’Hooghe MB et al (2010) Boosting endogenous neuroprotection in multiple sclerosis: the ASsociation of Inosine and Interferon beta in relapsing- remitting Multiple Sclerosis (ASIIMS) trial. Mult Scler 16:455–462

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Aramburu I, Sanchez-Juan P, Jesus S et al (2013) Genetic variability related to serum uric acid concentration and risk of Parkinson’s disease. Mov Disord 28:1737–1740

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro S, Ponceau A, Toulorge D et al (2009) Protection of midbrain dopaminergic neurons by the end-product of purine metabolism uric acid: potentiation by low-level depolarization. J Neurochem 109:1118–1128

    Article  CAS  PubMed  Google Scholar 

  • Haberman F, Tang SC, Arumugam TV et al (2007) Soluble neuroprotective antioxidant uric acid analogs ameliorate ischemic brain injury in mice. Neuromolecular Med 9:315–323

    Article  CAS  PubMed  Google Scholar 

  • Hauser DN, Hastings TG (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 51:35–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hediger MA, Johnson RJ, Miyazaki H et al (2005) Molecular physiology of urate transport. Physiology 20:125–133

    Article  CAS  PubMed  Google Scholar 

  • Hellenbrand W, Boeing H, Robra BP et al (1996) Diet and Parkinson’s disease. II: a possible role for the past intake of specific nutrients. Results from a self-administered food-frequency questionnaire in a case-control study. Neurology 47:644–650

    Article  CAS  PubMed  Google Scholar 

  • Hindley S, Herman MA, Rathbone MP (1994) Stimulation of reactive astrogliosis in vivo by extracellular adenosine diphosphate or an adenosine A2 receptor agonist. J Neurosci Res 38:399–406

    Article  CAS  PubMed  Google Scholar 

  • Hooper DC, Spitsin S, Kean RB et al (1998) Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A 95:675–680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hooper DC, Scott GS, Zborek A et al (2000) Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood-CNS barrier permeability changes, and tissue damage in a mouse model of multiple sclerosis. FASEB J 14:691–698

    CAS  PubMed  Google Scholar 

  • Hozawa A, Folsom AR, Ibrahim H et al (2006) Serum uric acid and risk of ischemic stroke: the ARIC Study. Atherosclerosis 187:401–407

    Article  CAS  PubMed  Google Scholar 

  • Hu G, Bidel S, Jousilahti P et al (2007) Coffee and tea consumption and the risk of Parkinson’s disease. Mov Disord 22:2242–2248

    Article  PubMed  Google Scholar 

  • Huang NK, Lin JH, Lin JT et al (2011) A new drug design targeting the adenosinergic system for Huntington’s disease. PLoS One 6:e20934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iadecola C, Zhang F, Xu S et al (1995) Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab 15:378–384

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Kurokawa M, Aoyama S et al (2002) Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson’s disease. J Neurochem 80:262–270

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Hirayama T, Takazawa T et al (2012) Relationships between disease progression and serum levels of lipid, urate, creatinine and ferritin in Japanese patients with amyotrophic lateral sclerosis: a cross-sectional study. Intern Med 51:1501–1508

    Article  CAS  PubMed  Google Scholar 

  • Imamura K, Takeshima T, Nakaso K et al (2008) Pramipexole has astrocyte-mediated neuroprotective effects against lactacystin toxicity. Neurosci Lett 440:97–102

    Article  CAS  PubMed  Google Scholar 

  • Innamorato NG, Jazwa A, Rojo AI et al (2010) Different susceptibility to the Parkinson’s toxin MPTP in mice lacking the redox master regulator Nrf2 or its target gene heme oxygenase-1. PLoS One 5:e11838

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Irizarry MC, Raman R, Schwarzschild MA et al (2009) Plasma urate and progression of mild cognitive impairment. Neurodegener Dis 6:23–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jakel RJ, Townsend JA, Kraft AD et al (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res 1144:192–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53:S26–S36

    Article  CAS  PubMed  Google Scholar 

  • Jesus S, Perez I, Caceres-Redondo MT et al (2012) Low serum uric acid concentration in Parkinson’s disease in southern Spain. Eur J Neurol 20:208–210

    Article  PubMed  Google Scholar 

  • Jinnah HA, Ceballos-Picot I, Torres RJ et al (2010) Attenuated variants of Lesch-Nyhan disease. Brain 133:671–689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joghataie MT, Roghani M, Negahdar F et al (2004) Protective effect of caffeine against neurodegeneration in a model of Parkinson’s disease in rat: behavioral and histochemical evidence. Parkinsonism Relat Disord 10:465–468

    Article  PubMed  Google Scholar 

  • Johansen KK, Wang L, Aasly JO et al (2009) Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS One 4:e7551

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jones DC, Gunasekar PG, Borowitz JL et al (2000) Dopamine-induced apoptosis is mediated by oxidative stress and Is enhanced by cyanide in differentiated PC12 cells. J Neurochem 74:2296–2304

    Article  CAS  PubMed  Google Scholar 

  • Joshi G, Johnson JA (2012) The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Pat CNS Drug Discov 7:218–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kachroo A, Irizarry MC, Schwarzschild MA (2010) Caffeine protects against combined paraquat and maneb-induced dopaminergic neuron degeneration. Exp Neurol 223:657–661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kataoka H, Kiriyama T, Kobayashi Y et al (2013) Clinical outcomes and serum uric acid levels in elderly patients with amyotrophic lateral sclerosis aged ≥ 70 years. Am J Neurodegener Dis 2:140–144

    PubMed Central  PubMed  Google Scholar 

  • Keebaugh AC, Thomas JW (2010) The evolutionary fate of the genes encoding the purine catabolic enzymes in hominoids, birds, and reptiles. Mol Biol Evol 27:1359–1369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keizman D, Ish-Shalom M, Berliner S et al (2009) Low uric acid levels in serum of patients with ALS: further evidence for oxidative stress? J Neurol Sci 285:95–99

    Article  CAS  PubMed  Google Scholar 

  • Kim TS, Pae CU, Yoon SJ et al (2006) Decreased plasma antioxidants in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 21:344–348

    Article  PubMed  Google Scholar 

  • Kolz M, Johnson T, Sanna S et al (2009) Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 5:e1000504

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kroncke KD, Fehsel K, Kolb-Bachofen V (1998) Inducible nitric oxide synthase in human diseases. Clin Exp Immunol 113:147–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kutzing MK, Firestein BL (2008) Altered uric acid levels and disease states. J Pharmacol Exp Ther 324:1–7

    Article  CAS  PubMed  Google Scholar 

  • Larumbe Ilundain R, Ferrer Valls JV, Vines Rueda JJ et al (2001) Case-control study of markers of oxidative stress and metabolism of blood iron in Parkinson’s disease. Rev Esp Salud Publica 75:43–53

    Article  CAS  PubMed  Google Scholar 

  • Laurent C, Eddarkaoui S, Derisbourg M et al (2014) Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology. Neurobiol Aging 35:2079–2090

    Article  CAS  PubMed  Google Scholar 

  • Lee CF, Chern Y (2014) Adenosine receptors and Huntington’s disease. Int Rev Neurobiol 119:195–232

    Article  PubMed  Google Scholar 

  • Lee JE, Song SK, Sohn YH et al (2011) Uric acid as a potential disease modifier in patients with multiple system atrophy. Mov Disord 26:1533–1536

    Article  PubMed  Google Scholar 

  • Lekieffre D, Callebert J, Plotkine M et al (1991) Enhancement of endogenous excitatory amino acids by theophylline does not modify the behavioral and histological consequences of forebrain ischemia. Brain Res 565:353–357

    Article  CAS  PubMed  Google Scholar 

  • Li S, Sanna S, Maschio A et al (2007) The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet 3:e194

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li XZ, Bai LM, Yang YP et al (2009) Effects of IL-6 secreted from astrocytes on the survival of dopaminergic neurons in lipopolysaccharide-induced inflammation. Neurosci Res 65:252–258

    Article  CAS  PubMed  Google Scholar 

  • Licinio J, Prolo P, McCann SM et al (1999) Brain iNOS: current understanding and clinical implications. Mol Med Today 5:225–232

    Article  CAS  PubMed  Google Scholar 

  • Lindsay J, Laurin D, Verreault R et al (2002) Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156:445–453

    Article  PubMed  Google Scholar 

  • Lipkowitz MS (2012) Regulation of uric acid excretion by the kidney. Curr Rheumatol Rep 14:179–188

    Article  CAS  PubMed  Google Scholar 

  • Machado-Filho JA, Correia AO, Montenegro AB et al (2014) Caffeine neuroprotective effects on 6-OHDA-lesioned rats are mediated by several factors, including pro-inflammatory cytokines and histone deacetylase inhibitions. Behav Brain Res 264:116–125

    Article  CAS  PubMed  Google Scholar 

  • Maesaka JK, Wolf-Klein G, Piccione JM et al (1993) Hypouricemia, abnormal renal tubular urate transport, and plasma natriuretic factor(s) in patients with Alzheimer’s disease. J Am Geriatr Soc 41:501–506

    Article  CAS  PubMed  Google Scholar 

  • Markowitz CE, Spitsin S, Zimmerman V et al (2009) The treatment of multiple sclerosis with inosine. J Altern Complement Med 15:619–625

    Article  PubMed Central  PubMed  Google Scholar 

  • Massa J, O’Reilly EJ, Munger KL et al (2012) Caffeine and alcohol intakes have no association with risk of multiple sclerosis. Mult Scler 19:53–58

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matos M, Augusto E, Agostinho P et al (2013) Antagonistic interaction between adenosine A2A receptors and Na+/K+-ATPase-α2 controlling glutamate uptake in astrocytes. J Neurosci 33:18492–18502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCall AL, Millington WR, Wurtman RJ (1982) Blood-brain barrier transport of caffeine: dose-related restriction of adenine transport. Life Sci 31:2709–2715

    Article  CAS  PubMed  Google Scholar 

  • McDermott MP, Hall WJ, Oakes D et al (2002) Design and analysis of two-period studies of potentially disease-modifying treatments. Control Clin Trials 23:635–649

    Article  PubMed  Google Scholar 

  • McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483

    Article  PubMed  Google Scholar 

  • Melani A, Cipriani S, Vannucchi MG et al (2009) Selective adenosine A2a receptor antagonism reduces JNK activation in oligodendrocytes after cerebral ischaemia. Brain 132:1480–1495

    Article  PubMed  Google Scholar 

  • Merck Sharp & Dohme Corp. (2015) A placebo- and active-controlled study of preladenant in early Parkinson’s disease. http://clinicaltrials.gov/show/NCT01155479

  • Mievis S, Blum D, Ledent C (2011) A2A receptor knockout worsens survival and motor behaviour in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 41:570–576

    Article  CAS  PubMed  Google Scholar 

  • Minghetti L, Greco A, Potenza RL et al (2007) Effects of the adenosine A2A receptor antagonist SCH 58621 on cyclooxygenase-2 expression, glial activation, and brain-derived neurotrophic factor availability in a rat model of striatal neurodegeneration. J Neuropathol Exp Neurol 66:363–371

    Article  CAS  PubMed  Google Scholar 

  • Moccia M, Picillo M, Erro R et al (2014) Presence and progression of non-motor symptoms in relation to uric acid in de novo Parkinson’s disease. Eur J Neurol 22:93–98

    Article  PubMed  Google Scholar 

  • Morelli M, Carta AR, Jenner P (2009) Adenosine A2A receptors and Parkinson’s disease. Handb Exp Pharmacol 193:589–615

    Article  CAS  PubMed  Google Scholar 

  • Morelli M, Carta AR, Kachroo A et al (2010) Pathophysiological roles for purines: adenosine, caffeine and urate. Prog Brain Res 183:183–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morozova N, Weisskopf MG, McCullough ML et al (2008) Diet and amyotrophic lateral sclerosis. Epidemiology 19:324–337

    Article  PubMed  Google Scholar 

  • Munoz Garcia D, Midaglia L, Martinez Vilela J et al (2015) Associated Inosine to interferon: results of a clinical trial in multiple sclerosis. Acta Neurol Scand. 131:405–410

    Google Scholar 

  • Neymotin A, Calingasan NY, Wille E et al (2011) Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis. Free Radic Biol Med 51:88–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niranjan R (2013) The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes. Mol Neurobiol 49:28–38

    Article  PubMed  CAS  Google Scholar 

  • Nishizaki T (2004) ATP- and adenosine-mediated signaling in the central nervous system: adenosine stimulates glutamate release from astrocytes via A2a adenosine receptors. J Pharmacol Sci 94:100–102

    Article  CAS  PubMed  Google Scholar 

  • Oda M, Satta Y, Takenaka O et al (2002) Loss of urate oxidase activity in hominoids and its evolutionary implications. Mol Biol Evol 19:640–653

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly EJ, Gao X, Weisskopf MG et al (2010) Plasma urate and Parkinson’s disease in women. Am J Epidemiol 172:666–670

    Article  PubMed Central  PubMed  Google Scholar 

  • Orowan E (1955) The origin of man. Nature 175:683–684

    Article  CAS  PubMed  Google Scholar 

  • Ostwald P, Park SS, Toledano AY et al (1997) Adenosine receptor blockade and nitric oxide synthase inhibition in the retina: impact upon post-ischemic hyperemia and the electroretinogram. Vision Res 37:3453–3461

    Article  CAS  PubMed  Google Scholar 

  • Paganoni S, Zhang M, Quiroz Zarate A et al (2012) Uric acid levels predict survival in men with amyotrophic lateral sclerosis. J Neurol 259:1923–1928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parkinson’s-Study-Group, Schwarzschild MA, Ascherio A et al (2014) Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol 71:141–150

    Article  PubMed  Google Scholar 

  • Pierri M, Vaudano E, Sager T et al (2005) KW-6002 protects from MPTP induced dopaminergic toxicity in the mouse. Neuropharmacology 48:517–524

    Article  CAS  PubMed  Google Scholar 

  • Pinna A (2014) Adenosine A2A receptor antagonists in Parkinson’s disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs 28:455–474

    Article  CAS  PubMed  Google Scholar 

  • Pinna A, Tronci E, Schintu N et al (2010) A new ethyladenine antagonist of adenosine A(2A) receptors: behavioral and biochemical characterization as an antiparkinsonian drug. Neuropharmacology 58:613–623

    Article  CAS  PubMed  Google Scholar 

  • Polidori MC, Mattioli P, Aldred S et al (2004) Plasma antioxidant status, immunoglobulin g oxidation and lipid peroxidation in demented patients: relevance to Alzheimer disease and vascular dementia. Dement Geriatr Cogn Disord 18:265–270

    Article  CAS  PubMed  Google Scholar 

  • Popoli P, Pintor A, Domenici MR et al (2002) Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci 22:1967–1975

    CAS  PubMed  Google Scholar 

  • Postuma R (2015) Caffeine as a therapy for Parkinson’s disease. http://clinicaltrials.gov/show/NCT01738178. Accessed July 2015

  • Postuma RB, Lang AE, Munhoz RP et al (2012) Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology 79:651–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Potenza RL, Armida M, Ferrante A et al (2013) Effects of chronic caffeine intake in a mouse model of amyotrophic lateral sclerosis. J Neurosci Res 91:585–592

    Article  CAS  PubMed  Google Scholar 

  • Prasanthi JR, Dasari B, Marwarha G et al (2010) Caffeine protects against oxidative stress and Alzheimer’s disease-like pathology in rabbit hippocampus induced by cholesterol-enriched diet. Free Radic Biol Med 49:1212–1220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Proctor P (1970) Similar functions of uric acid and ascorbate in man? Nature 228:868

    Article  CAS  PubMed  Google Scholar 

  • PSG (1989a) Effect of deprenyl on the progression of disability in early Parkinson’s disease. The Parkinson Study Group. N Engl J Med 321:1364–1371

    Article  Google Scholar 

  • PSG (1989b) DATATOP: a multicenter controlled clinical trial in early Parkinson’s disease. Parkinson Study Group. Arch Neurol 46:1052–1060

    Article  Google Scholar 

  • PSG (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 328:176–183

    Article  Google Scholar 

  • PSG (2007) Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson disease. Neurology 69:1480–1490

    Article  CAS  Google Scholar 

  • Pugliese AM, Traini C, Cipriani S et al (2009) The adenosine A2A receptor antagonist ZM241385 enhances neuronal survival after oxygen-glucose deprivation in rat CA1 hippocampal slices. Br J Pharmacol 157:818–830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ragonese P, Salemi G, Morgante L et al (2003) A case-control study on cigarette, alcohol, and coffee consumption preceding Parkinson’s disease. Neuroepidemiology 22:297–304

    Article  CAS  PubMed  Google Scholar 

  • Rathinam ML, Watts LT, Narasimhan M et al (2012) Astrocyte mediated protection of fetal cerebral cortical neurons from rotenone and paraquat. Environ Toxicol Pharmacol 33:353–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rinaldi P, Polidori MC, Metastasio A et al (2003) Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol Aging 24:915–919

    Article  CAS  PubMed  Google Scholar 

  • Romanos E, Planas AM, Amaro S et al (2007) Uric acid reduces brain damage and improves the benefits of rt-PA in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab 27:14–20

    Article  CAS  PubMed  Google Scholar 

  • Ross GW, Abbott RD, Petrovitch H et al (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283:2674–2679

    Article  CAS  PubMed  Google Scholar 

  • Rudolphi KA, Schubert P, Parkinson FE et al (1992) Adenosine and brain ischemia. Cerebrovasc Brain Metab Rev 4:346–369

    CAS  PubMed  Google Scholar 

  • Saura J, Angulo E, Ejarque A et al (2005) Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. J Neurochem 95:919–929

    Article  CAS  PubMed  Google Scholar 

  • Scatena A, Fornai F, Trincavelli ML et al (2011) 3-(Fur-2-yl)-10-(2-phenylethyl)-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one, a novel adenosine receptor antagonist with A(2A)-mediated neuroprotective effects. ACS Chem Neurosci 2:526–535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwarzschild MA, Xu K, Oztas E et al (2003) Neuroprotection by caffeine and more specific A2A receptor antagonists in animal models of Parkinson’s disease. Neurology 61:S55–S61

    Article  CAS  PubMed  Google Scholar 

  • Schwarzschild MA, Agnati L, Fuxe K et al (2006) Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci 29:647–654

    Article  CAS  PubMed  Google Scholar 

  • Schwarzschild MA, Schwid SR, Marek K et al (2008) Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch Neurol 65:716–723

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwarzschild MA, Macklin EA, Ascherio A (2014) Urate and neuroprotection trials. Lancet Neurol 13:758

    Article  PubMed  Google Scholar 

  • Scott GS, Spitsin SV, Kean RB et al (2002) Therapeutic intervention in experimental allergic encephalomyelitis by administration of uric acid precursors. Proc Natl Acad Sci U S A 99:16303–16308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scott GS, Cuzzocrea S, Genovese T et al (2005) Uric acid protects against secondary damage after spinal cord injury. Proc Natl Acad Sci U S A 102:3483–3488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seida M, Wagner HG, Vass K et al (1988) Effect of aminophylline on postischemic edema and brain damage in cats. Stroke 19:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Serra PA, Sciola L, Delogu MR et al (2002) The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induces apoptosis in mouse nigrostriatal glia. Relevance to nigral neuronal death and striatal neurochemical changes. J Biol Chem 277:34451–34461

    Article  CAS  PubMed  Google Scholar 

  • Simon DK, Swearingen CJ, Hauser RA et al (2008) Caffeine and progression of Parkinson disease. Clin Neuropharmacol 31:189–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simon KC, Eberly S, Gao X et al (2014) Mendelian randomization of serum urate and parkinson disease progression. Ann Neurol 76:862–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonin C, Duru C, Salleron J et al (2013) Association between caffeine intake and age at onset in Huntington’s disease. Neurobiol Dis 58:179–182

    Article  CAS  PubMed  Google Scholar 

  • So A, Thorens B (2010) Uric acid transport and disease. J Clin Invest 120:1791–1799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sonsalla PK, Wong LY, Harris SL et al (2012) Delayed caffeine treatment prevents nigral dopamine neuron loss in a progressive rat model of Parkinson’s disease. Exp Neurol 234:482–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spasojevic I, Stevic Z, Nikolic-Kokic A et al (2010) Different roles of radical scavengers—ascorbate and urate in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Redox Rep 15:81–86

    Article  CAS  PubMed  Google Scholar 

  • Spitsin S, Hooper DC, Leist T et al (2001) Inactivation of peroxynitrite in multiple sclerosis patients after oral administration of inosine may suggest possible approaches to therapy of the disease. Mult Scler 7:313–319

    Article  CAS  PubMed  Google Scholar 

  • Stevens B, Porta S, Haak LL et al (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855–868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stocchi F, Rascol O, Hauser R et al (2014) Phase-3 clinical trial of the adenosine 2a antagonist preladenant, given as monotherapy, in patients with Parkinson’s disease. Neurology 82:S7.004

    Google Scholar 

  • Stone TW, Ceruti S, Abbracchio MP (2009) Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 193:535–587

    Article  CAS  PubMed  Google Scholar 

  • Sutherland GR, Peeling J, Lesiuk HJ et al (1991) The effects of caffeine on ischemic neuronal injury as determined by magnetic resonance imaging and histopathology. Neuroscience 42:171–182

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi H (2013) Roles of glial cells in neuroinflammation and neurodegeneration. Clin Exp Neuroimmunol 4:2–16

    Article  Google Scholar 

  • Tan EK, Tan C, Fook-Chong SM et al (2003) Dose-dependent protective effect of coffee, tea, and smoking in Parkinson’s disease: a study in ethnic Chinese. J Neurol Sci 216:163–167

    Article  PubMed  Google Scholar 

  • Toncev G (2006) Therapeutic value of serum uric acid levels increasing in the treatment of multiple sclerosis. Vojnosanit Pregl 63:879–882

    Article  PubMed  Google Scholar 

  • Vargas MR, Johnson DA, Sirkis DW et al (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28:13574–13581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vitart V, Rudan I, Hayward C et al (2008) SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet 40:437–442

    Article  CAS  PubMed  Google Scholar 

  • Von Lubitz DK, Lin RC, Melman N et al (1994) Chronic administration of selective adenosine A1 receptor agonist or antagonist in cerebral ischemia. Eur J Pharmacol 256:161–167

    Article  Google Scholar 

  • Watanabe S, Kang DH, Feng L et al (2002) Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension 40:355–360

    Article  CAS  PubMed  Google Scholar 

  • Weisskopf MG, O’Reilly E, Chen H et al (2007) Plasma urate and risk of Parkinson’s disease. Am J Epidemiol 166:561–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wills AM, Eberly S, Tennis M et al (2013) Caffeine consumption and risk of dyskinesia in CALM-PD. Mov Disord 28:380–383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winquist A, Steenland K, Shankar A (2010) Higher serum uric acid associated with decreased Parkinson’s disease prevalence in a large community-based survey. Mov Disord 25:932–936

    Article  PubMed  Google Scholar 

  • Wostyn P, Van Dam D, Audenaert K et al (2011) Increased cerebrospinal fluid production as a possible mechanism underlying caffeine’s protective effect against Alzheimer’s disease. Int J Alzheimers Dis 2011:617420

    PubMed Central  PubMed  Google Scholar 

  • Wu XW, Muzny DM, Lee CC et al (1992) Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol 34:78–84

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Bastia E, Xu YH et al (2006) Forebrain adenosine A2A receptors contribute to L-3,4-dihydroxyphenylalanine-induced dyskinesia in hemiparkinsonian mice. J Neurosci 26:13548–13555

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Bastia E, Schwarzschild M (2005) Therapeutic potential of adenosine A(2A) receptor antagonists in Parkinson’s disease. Pharmacol Ther 105:267–310

    Article  CAS  PubMed  Google Scholar 

  • Yadav V, Bever C Jr, Bowen J et al (2014) Summary of evidence-based guideline: complementary and alternative medicine in multiple sclerosis: report of the guideline development subcommittee of the American Academy of Neurology. Neurology 82:1083–1092

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamamoto N, Sawada H, Izumi Y et al (2007) Proteasome inhibition induces glutathione synthesis and protects cells from oxidative stress: relevance to Parkinson disease. J Biol Chem 282:4364–4372

    Article  CAS  PubMed  Google Scholar 

  • Yao SQ, Li ZZ, Huang QY et al (2012) Genetic inactivation of the adenosine A(2A) receptor exacerbates brain damage in mice with experimental autoimmune encephalomyelitis. J Neurochem 123:100–112

    Article  CAS  PubMed  Google Scholar 

  • Yeum KJ, Russell RM, Krinsky NI et al (2004) Biomarkers of antioxidant capacity in the hydrophilic and lipophilic compartments of human plasma. Arch Biochem Biophys 430:97–103

    Article  CAS  PubMed  Google Scholar 

  • Yu ZF, Bruce-Keller AJ, Goodman Y et al (1998) Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J Neurosci Res 53:613–625

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Shen HY, Coelho JE et al (2008) Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Ann Neurol 63:338–346

    Article  CAS  PubMed  Google Scholar 

  • Zeitlin R, Patel S, Burgess S et al (2011) Caffeine induces beneficial changes in PKA signaling and JNK and ERK activities in the striatum and cortex of Alzheimer’s transgenic mice. Brain Res 1417:127–136

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Shu HY, Huang T et al (2014) Nrf2 signaling contributes to the neuroprotective effects of urate against 6-OHDA toxicity. PLoS One 9:e100286

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zheng Z, Guo X, Wei Q et al (2014) Serum uric acid level is associated with the prevalence but not with survival of amyotrophic lateral sclerosis in a Chinese population. Metab Brain Dis 29:771–775

    Article  CAS  PubMed  Google Scholar 

  • Zhu TG, Wang XX, Luo WF et al (2012) Protective effects of urate against 6-OHDA-induced cell injury in PC12 cells through antioxidant action. Neurosci Lett 506:175–179

    Article  CAS  PubMed  Google Scholar 

  • Zoccolella S, Simone IL, Capozzo R et al (2011) An exploratory study of serum urate levels in patients with amyotrophic lateral sclerosis. J Neurol 258:238–243

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Dept of Defense/NETPR program W81XWH-11-1-0150 and NIH R21NS084710 for the funding. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachit Bakshi PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bakshi, R., Logan, R., Schwarzschild, M. (2015). Purines in Parkinson’s: Adenosine A2A Receptors and Urate as Targets for Neuroprotection. In: Morelli, M., Simola, N., Wardas, J. (eds) The Adenosinergic System. Current Topics in Neurotoxicity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-20273-0_6

Download citation

Publish with us

Policies and ethics