Skip to main content

Adenosine A2A Receptors and Neurotrophic Factors: Relevance for Parkinson’s Disease

  • Chapter
  • First Online:
The Adenosinergic System

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 10))

Abstract

Neurotrophic factors (NTF) or drugs able to boost NTF actions have been frequently considered as promising therapies for neurodegenerative diseases namely for Parkinson’s disease (PD).

A considerable number of data was published demonstrating that there is a cross talk between NTF and a particular type of adenosine receptors, the A2A receptors (A2AR). Together, those studies show that relevant actions of NTF are dependent on or facilitated by activation of A2AR, so that most NTF actions on synapses are lost upon blockade of A2AR. These findings suggest caution in the use of A2AR antagonists whenever NTF actions are demanded and place the A2AR agonists in a suitable position as a pharmacologic strategy to potentiate NTF mediated actions in neurodegenerative diseases, including PD. However, the negative interaction between A2AR and dopamine D2 receptors in the striatum, together with the A2AR-mediated exacerbation of excitotoxicity mechanisms, points towards the therapeutic potential of A2AR antagonists in PD. Indeed, clinical trials with A2AR antagonists were already conducted.

Here we detail the existing, molecular and functional, evidence for the cross-talk between NTF and A2AR and discuss its possible relevance for the treatment of PD. Available data highlights the need for considering appropriate time windows for the different strategies to fight the disease to avoid losing endogenous neurotrophic support in the early phases of the disease where synapses and neurons are to struggling for life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaneya Y, Tsumoto T, Hatanaka H (1996) Brain-derived neurotrophic factor blocks long-term depression in rat visual cortex. J Neurophysiol 76:4198–4201

    CAS  PubMed  Google Scholar 

  • Arslan G, Kontny E, Fredholm BB (1997) Down-regulation of adenosine A2A receptors upon NGF-induced differentiation of PC12 cells. Neuropharmacology 36:1319–1326

    Article  CAS  PubMed  Google Scholar 

  • Assaife-Lopes N, Sousa VC, Pereira DB et al (2014) Regulation of TrkB receptor translocation to lipid rafts by adenosine A(2A) receptors and its functional implications for BDNF-induced regulation of synaptic plasticity. Purinergic Signal 10:251–267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker-Herman TL, Fuller DD, Bavis RW et al (2004) BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci 7:48–55

    Article  CAS  PubMed  Google Scholar 

  • Balkowiec A, Katz DM (2002) Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J Neurosci 22:10399–10407

    CAS  PubMed  Google Scholar 

  • Batalha VL, Pego JM, Fontinha BM et al (2013) Adenosine A(2A) receptor blockade reverts hippocampal stress-induced deficits and restores corticosterone circadian oscillation. Mol Psychiatry 18:320–331

    Article  CAS  PubMed  Google Scholar 

  • Beghi E, Pupillo E, Messina P et al (2011) Coffee and amyotrophic lateral sclerosis: a possible preventive role. Am J Epidemiol 174:1002–1008

    Article  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  • Blum D, Hourez R, Galas MC et al (2003) Adenosine receptors and Huntington’s disease: implications for pathogenesis and therapeutics. Lancet Neurol 2:366–374

    Article  CAS  PubMed  Google Scholar 

  • Bocchiaro CM, Feldman JL (2004) Synaptic activity-independent persistent plasticity in endogenously active mammalian motoneurons. Proc Natl Acad Sci U S A 101:4292–4295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boillee S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59

    Article  CAS  PubMed  Google Scholar 

  • Boulanger L, Poo MM (1999) Gating of BDNF-induced synaptic potentiation by cAMP. Science 284:1982–1984

    Article  CAS  PubMed  Google Scholar 

  • Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125

    Article  CAS  PubMed  Google Scholar 

  • Bramham CR, Worley PF, Moore MJ et al (2008) The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci 28:11760–11767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calabresi P, Castrioto A, Di Filippo M et al (2013) New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson’s disease. Lancet Neurol 12:811–821

    Article  CAS  PubMed  Google Scholar 

  • Canas N, Pereira IT, Ribeiro JA et al (2004) Brain-derived neurotrophic factor facilitates glutamate and inhibits GABA release from hippocampal synaptosomes through different mechanisms. Brain Res 1016:72–78

    Article  CAS  PubMed  Google Scholar 

  • Carter AR, Chen C, Schwartz PM et al (2002) Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J Neurosci 22:1316–1327

    CAS  PubMed  Google Scholar 

  • Charles MP, Adamski D, Kholler B et al (2003) Induction of neurite outgrowth in PC12 cells by the bacterial nucleoside N6-methyldeoxyadenosine is mediated through adenosine A2a receptors and via cAMP and MAPK signaling pathways. Biochem Biophys Res Commun 304:795–800

    Article  CAS  PubMed  Google Scholar 

  • Cheng HC, Shih HM, Chern Y (2002) Essential role of cAMP-response element-binding protein activation by A2A adenosine receptors in rescuing the nerve growth factor-induced neurite outgrowth impaired by blockage of the MAPK cascade. J Biol Chem 277:33930–33942

    Article  CAS  PubMed  Google Scholar 

  • Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflamm 11:98

    Article  CAS  Google Scholar 

  • Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4:399–418

    Article  PubMed Central  PubMed  Google Scholar 

  • Costenla AR, Diógenes MJ, Canas PM et al (2011) Enhanced role of adenosine A(2A) receptors in the modulation of LTP in the rat hippocampus upon ageing. Eur J Neurosci 34:12–21

    Article  PubMed  Google Scholar 

  • Diógenes MJ, Fernandes CC, Sebastião AM et al (2004) Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci 24:2905–2913

    Article  PubMed  CAS  Google Scholar 

  • Diógenes MJ, Assaife-Lopes N, Pinto-Duarte A et al (2007) Influence of age on BDNF modulation of hippocampal synaptic transmission: interplay with adenosine A2A receptors. Hippocampus 17:577–585

    Article  PubMed  CAS  Google Scholar 

  • Diógenes MJ, Costenla AR, Lopes LV et al (2011) Enhancement of LTP in aged rats is dependent on endogenous BDNF. Neuropsychopharmacology 36:1823–1836

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Diógenes MJ, Dias RB, Rombo DM et al (2012) Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci 32:11750–11762

    Article  PubMed  CAS  Google Scholar 

  • Diógenes MJ, Neves-Tome R, Fucile S et al (2014) Homeostatic control of synaptic activity by endogenous adenosine is mediated by adenosine kinase. Cereb Cortex 24:67–80

    Article  PubMed Central  PubMed  Google Scholar 

  • Eide FF, Vining ER, Eide BL et al (1996) Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 16:3123–3129

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feldman JL, Mitchell GS, Nattie EE (2003) Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci 26:239–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandes CC, Pinto-Duarte A, Ribeiro JA et al (2008) Postsynaptic action of brain-derived neurotrophic factor attenuates alpha7 nicotinic acetylcholine receptor-mediated responses in hippocampal interneurons. J Neurosci 28:5611–5618

    Article  CAS  PubMed  Google Scholar 

  • Figurov A, Pozzo-Miller LD, Olafsson P et al (1996) Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381:706–709

    Article  CAS  PubMed  Google Scholar 

  • Fontinha BM, Diogenes MJ, Ribeiro JA et al (2008) Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A2A receptor activation by endogenous adenosine. Neuropharmacology 54:924–933

    Article  CAS  PubMed  Google Scholar 

  • Fontinha BM, Delgado-Garcia JM, Madronal N et al (2009) Adenosine A(2A) receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice. Neuropsychopharmacology 34:1865–1874

    Article  CAS  PubMed  Google Scholar 

  • Frank-Cannon TC, Alto LT, McAlpine FE et al (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4:47

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gines S, Bosch M, Marco S et al (2006) Reduced expression of the TrkB receptor in Huntington’s disease mouse models and in human brain. Eur J Neurosci 23:649–658

    Article  PubMed  Google Scholar 

  • Golder FJ, Mitchell GS (2005) Spinal synaptic enhancement with acute intermittent hypoxia improves respiratory function after chronic cervical spinal cord injury. J Neurosci 25:2925–2932

    Article  CAS  PubMed  Google Scholar 

  • Golder FJ, Ranganathan L, Satriotomo I et al (2008) Spinal adenosine A2a receptor activation elicits long-lasting phrenic motor facilitation. J Neurosci 28:2033–2042

    Article  CAS  PubMed  Google Scholar 

  • Gomes CA, Vaz SH, Ribeiro JA et al (2006) Glial cell line-derived neurotrophic factor (GDNF) enhances dopamine release from striatal nerve endings in an adenosine A2A receptor-dependent manner. Brain Res 1113:129–136

    Article  CAS  PubMed  Google Scholar 

  • Gomes CA, Simões PF, Canas PM et al (2009) GDNF control of the glutamatergic cortico-striatal pathway requires tonic activation of adenosine A receptors. J Neurochem 108:1208–1219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gomes C, Ferreira R, George J et al (2013) Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. J Neuroinflamm 10:16

    Article  CAS  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  CAS  PubMed  Google Scholar 

  • Gyarfas T, Knuuttila J, Lindholm P et al (2010) Regulation of brain-derived neurotrophic factor (BDNF) and cerebral dopamine neurotrophic factor (CDNF) by anti-parkinsonian drug therapy in vivo. Cell Mol Neurobiol 30:361–368

    Article  CAS  PubMed  Google Scholar 

  • Hartmann M, Heumann R, Lessmann V (2001) Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J 20:5887–5897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heese K, Fiebich BL, Bauer J et al (1997) Nerve growth factor (NGF) expression in rat microglia is induced by adenosine A2a-receptors. Neurosci Lett 231:83–86

    Article  CAS  PubMed  Google Scholar 

  • Huber KM, Sawtell NB, Bear MF (1998) Brain-derived neurotrophic factor alters the synaptic modification threshold in visual cortex. Neuropharmacology 37:571–579

    Article  CAS  PubMed  Google Scholar 

  • Ikegaya Y, Ishizaka Y, Matsuki N (2002) BDNF attenuates hippocampal LTD via activation of phospholipase C: implications for a vertical shift in the frequency-response curve of synaptic plasticity. Eur J Neurosci 16:145–148

    Article  PubMed  Google Scholar 

  • Jeon SJ, Rhee SY, Ryu JH et al (2011) Activation of adenosine A2A receptor up-regulates BDNF expression in rat primary cortical neurons. Neurochem Res 36:2259–2269

    Article  CAS  PubMed  Google Scholar 

  • Jeon SJ, Bak H, Seo J et al (2012) Oroxylin A induces BDNF expression on cortical neurons through adenosine A2A receptor stimulation: a possible role in neuroprotection. Biomol Ther (Seoul) 20:27–35

    Article  CAS  Google Scholar 

  • Jerónimo-Santos A, Batalha VL, Muller CE et al (2014) Impact of in vivo chronic blockade of adenosine A2A receptors on the BDNF-mediated facilitation of LTP. Neuropharmacology 83:99–106

    Article  CAS  PubMed  Google Scholar 

  • Jiang B, Akaneya Y, Hata Y et al (2003) Long-term depression is not induced by low-frequency stimulation in rat visual cortex in vivo: a possible preventing role of endogenous brain-derived neurotrophic factor. J Neurosci 23:3761–3770

    CAS  PubMed  Google Scholar 

  • Jiang Y, Wei N, Lu T et al (2011) Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats. Neuroscience 172:398–405

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Schuman EM (1995) Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267:1658–1662

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Welcher AA, Shelton D et al (1997) Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron 19:653–664

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Jeon SJ, Son KH et al (2006) Effect of the flavonoid, oroxylin A, on transient cerebral hypoperfusion-induced memory impairment in mice. Pharmacol Biochem Behav 85:658–668

    Article  CAS  PubMed  Google Scholar 

  • Korte M, Griesbeck O, Gravel C et al (1996) Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc Natl Acad Sci U S A 93:12547–12552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kust BM, Copray JC, Brouwer N et al (2002) Elevated levels of neurotrophins in human biceps brachii tissue of amyotrophic lateral sclerosis. Exp Neurol 177:419–427

    Article  CAS  PubMed  Google Scholar 

  • Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci U S A 98:3555–3560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levine MS, Klapstein GJ, Koppel A et al (1999) Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J Neurosci Res 58:515–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin LF, Doherty DH, Lile JD et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  CAS  PubMed  Google Scholar 

  • Linden DJ (1994) Long-term synaptic depression in the mammalian brain. Neuron 12:457–472

    Article  CAS  PubMed  Google Scholar 

  • Lopes LV, Sebastião AM, Ribeiro JA (2011) Adenosine and related drugs in brain diseases: present and future in clinical trials. Curr Top Med Chem 11:1087–1101

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Christian K, Lu B (2008) BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 89:312–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu B, Nagappan G, Guan X et al (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14:401–416

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Nicoll RA (1999) Long-term potentiation–a decade of progress? Science 285:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Martire A, Pepponi R, Domenici MR et al (2013) BDNF prevents NMDA-induced toxicity in models of Huntington’s disease: the effects are genotype specific and adenosine A(2A) receptor is involved. J Neurochem 125:225–235

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Franke A, Kaplan MR, Pfrieger FW et al (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15:805–819

    Article  CAS  PubMed  Google Scholar 

  • Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10:850–860

    Article  CAS  PubMed  Google Scholar 

  • Mitchell GS, Johnson SM (2003) Neuroplasticity in respiratory motor control. J Appl Physiol (1985) 94:358–374

    Google Scholar 

  • Mitchell GS, Baker TL, Nanda SA et al (2001) Invited review: intermittent hypoxia and respiratory plasticity. J Appl Physiol (1985) 90:2466–2475

    CAS  Google Scholar 

  • Mojsilovic-Petrovic J, Jeong GB, Crocker A et al (2006) Protecting motor neurons from toxic insult by antagonism of adenosine A2a and Trk receptors. J Neurosci 26:9250–9263

    Article  CAS  PubMed  Google Scholar 

  • Mutoh T, Sobue G, Hamano T et al (2000) Decreased phosphorylation levels of TrkB neurotrophin receptor in the spinal cords from patients with amyotrophic lateral sclerosis. Neurochem Res 25:239–245

    Article  CAS  PubMed  Google Scholar 

  • Nascimento F, Pousinha PA, Correia AM et al (2014) Adenosine A2A receptors activation facilitates neuromuscular transmission in the pre-symptomatic phase of the SOD1(G93A) ALS mice, but not in the symptomatic phase. Plos One. 9:e104081

    Google Scholar 

  • Neverova NV, Saywell SA, Nashold LJ et al (2007) Episodic stimulation of alpha1-adrenoreceptors induces protein kinase C-dependent persistent changes in motoneuronal excitability. J Neurosci 27:4435–4442

    Article  CAS  PubMed  Google Scholar 

  • Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920

    Article  CAS  PubMed  Google Scholar 

  • Orr AG, Orr AL, Li XJ et al (2009) Adenosine A(2A) receptor mediates microglial process retraction. Nat Neurosci 12:872–878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parreira S (2014) Modulation of GABA and glutamate release by brain-derived neurotrophic factor: role of adenosine A2A receptors. Master Thesis, Faculty of Medicine, University of Lisbon, Portugal

    Google Scholar 

  • Patterson SL, Abel T, Deuel TA et al (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16:1137–1145

    Article  CAS  PubMed  Google Scholar 

  • Pazzagli M, Pedata F, Pepeu G (1993) Effect of K+ depolarization, tetrodotoxin, and NMDA receptor inhibition on extracellular adenosine levels in rat striatum. Eur J Pharmacol 234:61–65

    Article  CAS  PubMed  Google Scholar 

  • Pereira DB, Chao MV (2007) The tyrosine kinase Fyn determines the localization of TrkB receptors in lipid rafts. J Neurosci 27:4859–4869

    Article  CAS  PubMed  Google Scholar 

  • Popoli P, Blum D, Martire A et al (2007) Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog Neurobiol 81:331–348

    Article  CAS  PubMed  Google Scholar 

  • Potenza RL, Tebano MT, Martire A et al (2007) Adenosine A(2A) receptors modulate BDNF both in normal conditions and in experimental models of Huntington’s disease. Purinergic Signal 3:333–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Potenza RL, Armida M, Ferrante A et al (2013) Effects of chronic caffeine intake in a mouse model of amyotrophic lateral sclerosis. J Neurosci Res 91:585–592

    Article  CAS  PubMed  Google Scholar 

  • Pousinha PA, Diógenes MJ, Ribeiro JA et al (2006) Triggering of BDNF facilitatory action on neuromuscular transmission by adenosine A2A receptors. Neurosci Lett 404:143–147

    Article  CAS  PubMed  Google Scholar 

  • Quiroz C, Gomes C, Pak AC et al (2006) Blockade of adenosine A2A receptors prevents protein phosphorylation in the striatum induced by cortical stimulation. J Neurosci 26:10808–10812

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal R, Chen ZY, Lee FS et al (2004) Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J Neurosci 24:6650–6658

    Article  CAS  PubMed  Google Scholar 

  • Ramirez SH, Fan S, Maguire CA et al (2004) Activation of adenosine A2A receptor protects sympathetic neurons against nerve growth factor withdrawal. J Neurosci Res 77:258–269

    Article  CAS  PubMed  Google Scholar 

  • Rebola N, Sebastião AM, de Mendonca A et al (2003) Enhanced adenosine A2A receptor facilitation of synaptic transmission in the hippocampus of aged rats. J Neurophysiol 90:1295–1303

    Article  CAS  PubMed  Google Scholar 

  • Rebola N, Simoes AP, Canas PM et al (2011) Adenosine A2A receptors control neuroinflammation and consequent hippocampal neuronal dysfunction. J Neurochem 117:100–111

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues TM, Jeronimo-Santos A, Sebastião AM et al (2014a) Adenosine A(2A) receptors as novel upstream regulators of BDNF-mediated attenuation of hippocampal long-term depression (LTD). Neuropharmacology 79:389–398

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues TM, Jeronimo-Santos A, Outeiro TF et al (2014b) Challenges and promises in the development of neurotrophic factor-based therapies for Parkinson’s disease. Drugs Aging 31:239–261

    Article  CAS  PubMed  Google Scholar 

  • Rosch H, Schweigreiter R, Bonhoeffer T et al (2005) The neurotrophin receptor p75NTR modulates long-term depression and regulates the expression of AMPA receptor subunits in the hippocampus. Proc Natl Acad Sci U S A 102:7362–7367

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sebastião AM, Ribeiro JA (2009) Triggering neurotrophic factor actions through adenosine A2A receptor activation: implications for neuroprotection. Br J Pharmacol 158:15–22

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sebastião AM, Colino-Oliveira M, Assaife-Lopes N et al (2013) Lipid rafts, synaptic transmission and plasticity: impact in age-related neurodegenerative diseases. Neuropharmacology 64:97–107

    Article  PubMed  CAS  Google Scholar 

  • Stayte S, Vissel B (2014) Advances in non-dopaminergic treatments for Parkinson’s disease. Front Neurosci 8:113

    PubMed Central  PubMed  Google Scholar 

  • Strand AD, Baquet ZC, Aragaki AK et al (2007) Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci 27:11758–11768

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Numakawa T, Shimazu K et al (2004) BDNF-induced recruitment of TrkB receptor into neuronal lipid rafts: roles in synaptic modulation. J Cell Biol 167:1205–1215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tebano MT, Martire A, Potenza RL et al (2008) Adenosine A(2A) receptors are required for normal BDNF levels and BDNF-induced potentiation of synaptic transmission in the mouse hippocampus. J Neurochem 104:279–286

    CAS  PubMed  Google Scholar 

  • Torres-Peraza JF, Giralt A, Garcia-Martinez JM et al (2008) Disruption of striatal glutamatergic transmission induced by mutant huntingtin involves remodeling of both postsynaptic density and NMDA receptor signaling. Neurobiol Dis 29:409–421

    Article  CAS  PubMed  Google Scholar 

  • Vaz SH, Cristovão-Ferreira S, Ribeiro JA et al (2008) Brain-derived neurotrophic factor inhibits GABA uptake by the rat hippocampal nerve terminals. Brain Res 1219:19–25

    Article  CAS  PubMed  Google Scholar 

  • Vaz SH, Jorgensen TN, Cristovão-Ferreira S et al (2011) Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT-1) from the plasma membrane of rat cortical astrocytes. J Biol Chem 286:40464–40476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei CJ, Augusto E, Gomes CA et al (2014) Regulation of fear responses by striatal and extrastriatal adenosine A2A receptors in forebrain. Biol Psychiatry 75:855–863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wieraszko A, Goldsmith G, Seyfried TN (1989) Stimulation-dependent release of adenosine triphosphate from hippocampal slices. Brain Res 485:244–250

    Article  CAS  PubMed  Google Scholar 

  • Wiese S, Jablonka S, Holtmann B et al (2007) Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc Natl Acad Sci U S A 104:17210–17215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woo NH, Teng HK, Siao CJ et al (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8:1069–1077

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Hayden MR, Xu B (2010) BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci 30:14708–14718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu B, Gottschalk W, Chow A et al (2000) The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving TrkB. J Neurosci 20:6888–6897

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto M, Sobue G, Li M et al (1993) Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and low-affinity nerve growth factor receptor (LNGFR) mRNA levels in cultured rat Schwann cells; differential time- and dose-dependent regulation by cAMP. Neurosci Lett 152:37–40

    Article  CAS  PubMed  Google Scholar 

  • Yanpallewar SU, Barrick CA, Buckley H et al (2012) Deletion of the BDNF truncated receptor TrkB.T1 delays disease onset in a mouse model of amyotrophic lateral sclerosis. PLoS One 7:e39946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zuccato C, Ciammola A, Rigamonti D et al (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293:493–498

    Article  CAS  PubMed  Google Scholar 

  • Zuccato C, Marullo M, Conforti P et al (2008) Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease. Brain Pathol 18:225–238

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Sebastião .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Diógenes, M., Ribeiro, J., Sebastião, A. (2015). Adenosine A2A Receptors and Neurotrophic Factors: Relevance for Parkinson’s Disease. In: Morelli, M., Simola, N., Wardas, J. (eds) The Adenosinergic System. Current Topics in Neurotoxicity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-20273-0_4

Download citation

Publish with us

Policies and ethics