Skip to main content

Caffeine and Neuroprotection in Parkinson’s Disease

  • Chapter
  • First Online:
The Adenosinergic System

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 10))

Abstract

Parkinson’s disease (PD)—the second most common neurodegenerative condition worldwide—has no proven neuroprotective intervention. However PD belongs to the ever-growing group of diseases that occur less frequently in coffee-drinkers. Coffee is the major dietary source of caffeine—an adenosine A2A receptor antagonist. This is presumed to be the main mechanism responsible for the decreased risk of developing PD among coffee drinkers. Furthermore, in view of other biochemical and cellular actions attributed to caffeine, it has been proposed based on basic science results that caffeine may have a neuroprotective role in PD. Animal data is supportive of this hypothesis by showing that caffeine is able to prevent neurodegeneration in PD animal models. Still, human data is lacking precluding the establishment of firm conclusions on the role of caffeine as a disease-modifying agent in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar LMV, Nobre HVJ, Macedo DS et al (2006) Neuroprotective effects of caffeine in the model of 6-hydroxydopamine lesion in rats. Pharmacol Biochem Behav 84:415–419

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  CAS  PubMed  Google Scholar 

  • Altman RD, Lang AE, Postuma RB (2011) Caffeine in Parkinson’s disease: a pilot open-label, dose-escalation study. Mov Disord 26:2427–2431

    Article  PubMed  Google Scholar 

  • Ascherio A, Zhang SM, Hernan MA et al (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63

    Article  CAS  PubMed  Google Scholar 

  • Ascherio A, Chen H, Schwarzschild MA et al (2003) Caffeine, postmenopausal estrogen, and risk of Parkinson’s disease. Neurology 60:790–795

    Article  CAS  PubMed  Google Scholar 

  • Ascherio A, Weisskopf MG, O’Reilly EJ et al (2004) Coffee consumption, gender, and Parkinson’s disease mortality in the cancer prevention study II cohort: the modifying effects of estrogen. Am J Epidemiol 160:977–984

    Article  PubMed  Google Scholar 

  • Barone JJ, Roberts HR (1995) Caffeine consumption. Food Chem Toxicol 34:119–129

    Article  Google Scholar 

  • Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101

    Article  CAS  PubMed  Google Scholar 

  • Benedetti MD, Bower JH, Maraganore DM et al (2000) Smoking, alcohol, and coffee consumption preceding Parkinson’s disease: a case-control study. Neurology 55:1350–1358

    Article  CAS  PubMed  Google Scholar 

  • Berdichevsky E, Riveros N, Sánchez-Armáss S et al (1983) Kainate, N-methylaspartate and other excitatory amino acids increase calcium influx into rat brain cortex cells in vitro. Neurosci Lett 36:75–80

    Article  CAS  PubMed  Google Scholar 

  • Biaggioni I, Paul S, Puckett A et al (1991) Caffeine and theophylline as adenosine receptor antagonists in humans. J Pharmacol Exp Ther 258:588–593

    CAS  PubMed  Google Scholar 

  • Burg AW (1975) Effects of caffeine in the human system. Tea Coffee Trade J 147:40–42

    Google Scholar 

  • Checkoway H, Powers K, Smith-Weller T et al (2002) Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155:732–738

    Article  PubMed  Google Scholar 

  • Chen J-F, Xu K, Petzer JP et al (2001) Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC143

    CAS  PubMed  Google Scholar 

  • Chen X, Lan X, Roche I et al (2008) Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J Neurochem 107:1147–1157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Costa J, Lunet N, Santos C et al (2010) Caffeine exposure and the risk of Parkinson’s disease: a systematic review and meta-analysis of observational studies. J Alzheimers Dis 20:S221–S238

    CAS  PubMed  Google Scholar 

  • Coyle JT, Bird SJ, Evans RH et al (1981) Excitatory amino acid neurotoxins: selectivity, specificity, and mechanisms of action. Based on an NRP one-day conference held June 30, 1980. Neurosci Res Program Bull 19:1–427

    Google Scholar 

  • Dall’Igna OP, Fett P, Gomes MW et al (2007) Caffeine and adenosine A(2a) receptor antagonists prevent b-amyloid (25–35)-induced cognitive deficits in mice. Exp Neurol 203:241–245

    Article  PubMed  CAS  Google Scholar 

  • Daly JW, Butts-Lamb P, Padgett W (1983) Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol Neurobiol 3:69–80

    Article  CAS  PubMed  Google Scholar 

  • de Lau LML, Breteler MMB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    Google Scholar 

  • de Rijk MC, Tzourio C, Breteler MM et al (1997) Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON collaborative study. European community concerted action on the epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:10–15

    Article  PubMed Central  PubMed  Google Scholar 

  • Egger M, Smith GD, Schneider M et al (1997) Bias in meta-analysis detected by a simple, graphical test. Br Med J 315:629–634

    Article  CAS  Google Scholar 

  • Ellens DJ, Leventhal DK (2013) Review: electrophysiology of basal ganglia and cortex in models of Parkinson disease. J Parkinsons Dis 3:241–254

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elm von E, Altman DG, Egger M et al (2007) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Epidemiology 18:800–804

    Article  Google Scholar 

  • Evans AH, Lawrence AD, Potts J et al (2006) Relationship between impulsive sensation seeking traits, smoking, alcohol and caffeine intake, and Parkinson’s disease. J Neurol Neurosurg Psychiatry 77:317–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Facheris MF, Schneider NK, Lesnick TG et al (2008) Coffee, caffeine-related genes, and Parkinson’s disease: a case-control study. Mov Disord 23:2033–2040

    Article  PubMed Central  PubMed  Google Scholar 

  • Fall PA, Fredrikson M, Axelson O et al (1999) Nutritional and occupational factors influencing the risk of Parkinson’s disease: a case‐control study in southeastern Sweden. Mov Disord 14:28–37

    Article  CAS  PubMed  Google Scholar 

  • Fenu S, Pinna A, Ongini E et al (1997) Adenosine A(2A) receptor antagonism potentiates L-DOPA-induced turning behaviour and c-fos expression in 6-hydroxydopamine-lesioned rats. Eur J Pharmacol 321:143–147

    Article  CAS  PubMed  Google Scholar 

  • Ferreira JJ, Katzenschlager R, Bloem BR et al (2012) Summary of the recommendations of the EFNS/MDS-ES review on therapeutic management of Parkinson’s disease. Eur J Neurol 20:5–15

    Article  Google Scholar 

  • Fink JS, Weaver DR, Rivkees SA et al (1992) Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Mol Brain Res 14:186–195

    Article  CAS  PubMed  Google Scholar 

  • Fink JS, Bains LA, Beiser A et al (2001) Caffeine intake and the risk of incident Parkinson’s disease: the Framingham study. Mov Disord 16:984

    Google Scholar 

  • Fink JS, Kalda A, Ryu H et al (2003) Genetic and pharmacological inactivation of the adenosine A2A receptor attenuates 3-nitropropionic acid-induced striatal damage. J Neurochem 88:538–544

    Article  CAS  Google Scholar 

  • Fredholm BB, Fuxe K, Agnati L (1976) Effect of some phosphodiesterase inhibitors on central dopamine mechanisms. Eur J Pharmacol 38:31–38

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Johansson B, van der Ploeg I et al (1993) Neuromodulatory roles of purines. Drug Dev Res 28:349–353

    Article  CAS  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J et al (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    CAS  PubMed  Google Scholar 

  • Fuxe K, Ferré S, Snaprud P et al (1993) Antagonistic A2A/D2 receptor interactions in the striatum as a basis for adenosine/dopamine interactions in the central nervous system. Drug Dev Res 28:374–380

    Article  CAS  Google Scholar 

  • Gerlach M, Riederer P (1996) Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm 103:987–1041

    Article  CAS  PubMed  Google Scholar 

  • Haack DG, Baumann RJ, McKean HE et al (1981) Nicotine exposure and Parkinson disease. Am J Epidemiol 114:191–200

    CAS  PubMed  Google Scholar 

  • Hancock DB, Martin ER, Stajich JM et al (2007) Smoking, caffeine, and nonsteroidal anti-inflammatory drugs in families with Parkinson disease. Arch Neurol 64:576–580

    Article  PubMed  Google Scholar 

  • Hellenbrand W, Boeing H, Robra BP et al (1996) Diet and Parkinson’s disease. II: a possible role for the past intake of specific nutrients. Results from a self-administered food-frequency questionnaire in a case-control study. Neurology 47:644–650

    Article  CAS  PubMed  Google Scholar 

  • Hernán MA, Takkouche B, Caamaño-Isorna F et al (2002) A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Ann Neurol 52:276–284

    Article  PubMed  Google Scholar 

  • Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Statist Med 21:1539–1558

    Article  Google Scholar 

  • Hosseini Tabatabaei N, Babakhani B, Hosseini-Tabatabaei A et al (2013) Non-genetic factors associated with the risk of Parkinson’s disease in Iranian patients. Funct Neurol 28:107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu G, Bidel S, Jousilahti P et al (2007) Coffee and tea consumption and the risk of Parkinson’s disease. Mov Disord 22:2242–2248

    Article  PubMed  Google Scholar 

  • Hughes AJ, Daniel SE, Kilford L et al (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jenner P, Rupniak NM, Rose S et al (1984) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the common marmoset. Neurosci Lett 50:85–90

    Article  CAS  PubMed  Google Scholar 

  • Jiméanez Jiméanez FJ, Mateo D, Giméanez Roldan S (1992) Premorbid smoking, alcohol consumption, and coffee drinking habits in Parkinson’s disease: a case‐control study. Mov Disord 7:339–344

    Article  Google Scholar 

  • Joghataie MT, Roghani M, Negahdar F et al (2004) Protective effect of caffeine against neurodegeneration in a model of Parkinson’s disease in rat: behavioral and histochemical evidence. Parkinsonism Relat Disord 10:465–468

    Article  PubMed  Google Scholar 

  • Kachroo A, Schwarzschild MA (2012) Adenosine A2A receptor gene disruption protects in an alpha-synuclein model of Parkinson’s disease. Ann Neurol 71:278–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kachroo A, Irizarry MC, Schwarzschild MA (2010) Caffeine protects against combined paraquat and maneb-induced dopaminergic neuron degeneration. Exp Neurol 223:657–661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanda T, Shiozaki S, Shimada J et al (1994) KF17837: a novel selective adenosine A 2A receptor antagonist with anticataleptic activity. Eur J Pharmacol 256:263–268

    Article  CAS  PubMed  Google Scholar 

  • Kandinov B, Giladi N, Korczyn AD (2007) The effect of cigarette smoking, tea, and coffee consumption on the progression of Parkinson’s disease. Parkinsonism Relat Disord 13:243–245

    Article  PubMed  Google Scholar 

  • Kandinov B, Giladi N, Korczyn AD (2009) Smoking and tea consumption delay onset of Parkinson’s disease. Parkinsonism Relat Disord 15:41–46

    Article  PubMed  Google Scholar 

  • Kartzinel R, Shoulson I, Calne DB (1976) Studies with bromocriptine: III. concomitant administration of caffeine to patients with idiopathic parkinsonism. Neurology 26:741–743

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa M, Houzen H, Tashiro K (2007) Effects of caffeine on the freezing of gait in Parkinson’s disease. Mov Disord 22:710–712

    Article  PubMed  Google Scholar 

  • Kyrozis A, Ghika A, Stathopoulos P et al (2013) Dietary and lifestyle variables in relation to incidence of Parkinson’s disease in Greece. Eur J Epidemiol 28:67–77

    Article  PubMed  Google Scholar 

  • Lang TA, Altman DG (2013) Basic statistical reporting for articles published in Biomedical Journals: the “statistical analyses and methods in the published literature” or the “SAMPL guidelines.” science editors’ handbook, European Association of Science Editors

    Google Scholar 

  • Lelo A, Miners JO, Robson RA et al (1986) Quantitative assessment of caffeine partial clearances in man. Br J Clin Pharmacol 22:183–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li XX, Nomura T, Aihara H et al (2001) Adenosine enhances glial glutamate efflux via A2a adenosine receptors. Life Sci 68:1343–1350

    Article  CAS  PubMed  Google Scholar 

  • Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu R, Guo X, Park Y et al (2012) Caffeine intake, smoking, and risk of Parkinson disease in men and women. Am J Epidemiol 175:1200–1207

    Article  PubMed Central  PubMed  Google Scholar 

  • Louis ED, Luchsinger JA, Tang MX et al (2003) Parkinsonian signs in older people: prevalence and associations with smoking and coffee. Neurology 61:24–28

    Article  PubMed  Google Scholar 

  • Macleod AD, Counsell CE (2013) cigarette smoking, alcohol consumption and caffeine intake in Pd and Pd subtypes: a community-based, incident cohort with matched controls. J Neurol Neurosurg Psychiatry 84:e2

    Article  Google Scholar 

  • Mao X, Chai Y, Lin YF (2007) Dual regulation of the ATP-sensitive potassium channel by caffeine. Am J Physiol Cell Physiol 292:C2239–C2258

    Google Scholar 

  • Martinez-Mir MI, Probst A, Palacios JM (1991) Adenosine A2 receptors: selective localization in the human basal ganglia and alterations with disease. Neuroscience 42:697–706

    Article  CAS  PubMed  Google Scholar 

  • Morano A, Jimenez-Jimenez FJ, Molina JA et al (1994) Risk-factors for Parkinson’s disease: case‐control study in the province of Cáceres, Spain. Acta Neurol Scand 89:164–170

    Article  CAS  PubMed  Google Scholar 

  • Morelli M, Fenu S, Pinna A et al (1994) Adenosine A2 receptors interact negatively with dopamine D1 and D2 receptors in unilaterally 6-hydroxydopamine-lesioned rats. Eur J Pharmacol 251:21–25

    Article  CAS  PubMed  Google Scholar 

  • Nakaso K, Ito S, Nakashima K (2008) Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson's disease model of SH-SY5Y cells. Neurosci Lett 432:146–150

    Article  CAS  PubMed  Google Scholar 

  • National Coffee Association of U.S.A (1993) United States of America Coffee Drinking Study, Winter 1993

    Google Scholar 

  • Nefzger MD, Quadfasel FA, Karl VC (1968) A retrospective study of smoking in Parkinson’s disease. Am J Epidemiol 88:149–158

    CAS  PubMed  Google Scholar 

  • Nicoletti A, Pugliese P, Nicoletti G et al (2010) Voluptuary habits and clinical subtypes of Parkinson’s disease: the FRAGAMP case-control study. Mov Disord 25:2387–2394

    Article  PubMed  Google Scholar 

  • Noyce AJ, Bestwick JP, Silveira-Moriyama L et al (2012) Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 72:893–901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Stamelou M et al (2014) The expanding universe of disorders of the basal ganglia. Lancet 384:523–531

    Article  PubMed  Google Scholar 

  • Olney JW (1986) Inciting excitotoxic cytocide among central neurons. Adv Exp Med Biol 203:631–645

    Article  CAS  PubMed  Google Scholar 

  • O’Regan MH, Simpson RE, Perkins LM et al (1992) The selective A2 adenosine receptor agonist CGS 21680 enhances excitatory transmitter amino acid release from the ischemic rat cerebral cortex. Neurosci Lett 138:169–172

    Article  PubMed  Google Scholar 

  • Paganini-Hill A (2001) Risk factors for parkinson’s disease: the leisure world cohort study. Neuroepidemiology 20:118–124

    Article  CAS  PubMed  Google Scholar 

  • Palacios N, Gao X, McCullough ML et al (2012) Caffeine and risk of Parkinson’s disease in a large cohort of men and women. Mov Disord 27:1276–1282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pao EM, Fleming KH, Guenther PM et al (1982) Foods commonly eaten by individuals: amount per day and per eating occasion. Consumer Nutrition Center, Human Nutrition Information Service. United States Department of Agriculture, Washington, D.C.

    Google Scholar 

  • Parkinson FE, Fredholm BB (1990) Autoradiographic evidence for G-protein coupled A2-receptors in rat neostriatum using [3H]-CGS 21680 as a ligand. Naunyn Schmiedebergs Arch Pharmacol 342:85–89

    Article  CAS  PubMed  Google Scholar 

  • Pereira D, Garrett C (2010) Factores de risco da doença de Parkinson: um estudo epidemiológico. Acta Med Port 23:15–24

    PubMed  Google Scholar 

  • Pinna A, Di Chiara G, Wardas J et al (1996) Blockade of A2a adenosine receptors positively modulates turning behaviour and c-Fos expression induced by D1 agonists in dopamine-denervated rats. Eur J Neurosci 8:1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Pollanen MS, Dickson DW, Bergeron C (1993) Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 52:183–191

    Article  CAS  PubMed  Google Scholar 

  • Popoli P, Pintor A, Domenici MR et al (2002) Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci 22:1967–1975

    CAS  PubMed  Google Scholar 

  • Postuma RB, Lang AE, Munhoz RP et al (2012) Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology 79:651–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Powers KM, Kay DM, Factor SA et al (2008) Combined effects of smoking, coffee, and NSAIDs on Parkinson’s disease risk. Mov Disord 23:88–95

    Article  PubMed  Google Scholar 

  • Prémont J, Perez M, Blanc G et al (1979) Adenosine-sensitive adenylate cyclase in rat brain homogenates: kinetic characteristics, specificity, topographical, subcellular and cellular distribution. Mol Pharmacol 16:790–804

    PubMed  Google Scholar 

  • Preux PM, Condet A, Anglade C et al (2000) Parkinson’s disease and environmental factors. Matched case-control study in the Limousin region, France. Neuroepidemiology 19:333–337

    Article  CAS  PubMed  Google Scholar 

  • Ragonese P, Salemi G, Morgante L et al (2003) A case-control study on cigarette, alcohol, and coffee consumption preceding Parkinson’s disease. Neuroepidemiology 22:297–304

    Article  CAS  PubMed  Google Scholar 

  • Richfield EK, Thiruchelvam MJ, Cory-Slechta DA et al (2002) Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp Neurol 175:35–48

    Article  CAS  PubMed  Google Scholar 

  • Ross GW, Abbott RD, Petrovitch H et al (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283:2674–2679

    Article  CAS  PubMed  Google Scholar 

  • Rothman SM (1985) The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J Neurosci 5:1483–1489

    CAS  PubMed  Google Scholar 

  • Saaksjarvi K, Knekt P, Rissanen H et al (2008) Prospective study of coffee consumption and risk of Parkinson’s disease. Eur J Clin Nutr 62:908–915

    Article  CAS  PubMed  Google Scholar 

  • Schiffmann SN, Vanderhaeghen JJ (1993) Adenosine A2 receptors regulate the gene expression of striatopallidal and striatonigral neurons. J Neurosci 13:1080–1087

    CAS  PubMed  Google Scholar 

  • Schwarzschild MA, Chen J-F, Tennis M et al (2003) Relating caffeine consumption to Parkinson’s disease progression and dyskinesias development. Mov Disord 18:1082–1083

    Article  Google Scholar 

  • Shoulson I, Chase T (1975) Caffeine and the antiparkinsonian response to levodopa or piribedil. Neurology 25:722–724

    Article  CAS  PubMed  Google Scholar 

  • Simon DK, Swearingen CJ, Hauser RA et al (2008) Caffeine and progression of Parkinson disease. Clin Neuropharmacol 31:189–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simpson RE, O’Regan MH, Perkins LM et al (1992) Excitatory transmitter amino acid release from the ischemic rat cerebral cortex: effects of adenosine receptor agonists and antagonists. J Neurochem 58:1683–1690

    Article  CAS  PubMed  Google Scholar 

  • Sipetic SB, Vlajinac HD, Maksimovic JM et al (2011) Cigarette smoking, coffee intake and alcohol consumption preceding Parkinson’s disease: a case-control study. Acta Neuropsychiatr 24:109–114

    Article  Google Scholar 

  • Skeie GO, Muller B, Haugarvoll K et al (2010) Differential effect of environmental risk factors on postural instability gait difficulties and tremor dominant Parkinson’s disease. Mov Disord 25:1847–1852

    Article  CAS  PubMed  Google Scholar 

  • Sonsalla PK, Wong L-Y, Harris SL et al (2012) Delayed caffeine treatment prevents nigral dopamine neuron loss in a progressive rat model of Parkinson’s disease. Exp Neurol 234:482–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  • Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology. JAMA 283:2008–2012

    Article  CAS  PubMed  Google Scholar 

  • Suchowersky O, Gronseth G, Perlmutter J et al (2006) Practice parameter: neuroprotective strategies and alternative therapies for Parkinson disease (an evidence-based review): report of the quality standards subcommittee of the American Academy of Neurology. Neurology 66:976–982

    Article  CAS  PubMed  Google Scholar 

  • Tan E-K, Tan C, Fook-Chong SMC et al (2003) Dose-dependent protective effect of coffee, tea, and smoking in Parkinson’s disease: a study in ethnic Chinese. J Neurol Sci 216:163–167

    Article  PubMed  Google Scholar 

  • Tan E-K, Chua E, Fook-Chong SM et al (2007a) Association between caffeine intake and risk of Parkinson’s disease among fast and slow metabolizers. Pharmacogenet Genomics 17:1001–1005

    Article  CAS  PubMed  Google Scholar 

  • Tan LC, Koh W-P, Yuan J-M et al (2007b) Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. Am J Epidemiol 167:553–560

    Article  PubMed Central  PubMed  Google Scholar 

  • Tanaka K, Miyake Y, Fukushima W et al (2011) Intake of Japanese and Chinese teas reduces risk of Parkinson’s disease. Parkinsonism Relat Disord 17:446–450

    Article  PubMed  Google Scholar 

  • Tanner CM, Goldman SM (1996) Epidemiology of Parkinson’s disease. Neurol Clin 14:317–335

    Article  CAS  PubMed  Google Scholar 

  • Thiruchelvam M, Brockel BJ, Richfield EK et al (2000) Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson’s disease? Brain Res 873:225–234

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110

    Article  CAS  PubMed  Google Scholar 

  • Van den Eeden SK, Tanner CM, Bernstein AL et al (2003) Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 157:1015–1022

    Article  Google Scholar 

  • von Lubitz DK, Lin RC, Jacobson KA (1995) Cerebral ischemia in gerbils: effects of acute and chronic treatment with adenosine A2A receptor agonist and antagonist. Eur J Pharmacol 287:295–302

    Article  Google Scholar 

  • Wichmann T, Dostrovsky JO (2011) Pathological basal ganglia activity in movement disorders. Neuroscience 198:232–244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wirdefeldt K, Gatz M, Pawitan Y et al (2005) Risk and protective factors for Parkinson’s disease: a study in Swedish twins. Ann Neurol 57:27–33

    Article  PubMed  Google Scholar 

  • Xu K, Xu Y-H, Chen J-F et al (2002) Caffeine’s neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity shows no tolerance to chronic caffeine administration in mice. Neurosci Lett 322:13–16

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Xu Y-H, Brown-Jermyn D et al (2006) Estrogen prevents neuroprotection by caffeine in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 26:535–541

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Xu Y-H, Chen J-F et al (2010) Neuroprotection by caffeine: time course and role of its metabolites in the MPTP model of Parkinson’s disease. Neuroscience 167:475–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang SN, Dasgupta S, Lledo PM et al (1995) Reduction of dopamine D2 receptor transduction by activation of adenosine A2a receptors in stably A2a/D2 (long-form) receptor co-transfected mouse fibroblast cell lines: studies on intracellular calcium levels. Neuroscience 68:729–736

    Article  CAS  PubMed  Google Scholar 

  • Yazdani U, German DC, Liang CL et al (2006) Rat model of Parkinson’s disease: chronic central delivery of 1-methyl-4-phenylpyridinium (MPP+). Exp Neurol 200:172–183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodrigues, F., Caldeira, D., Ferreira, J., Costa, J. (2015). Caffeine and Neuroprotection in Parkinson’s Disease. In: Morelli, M., Simola, N., Wardas, J. (eds) The Adenosinergic System. Current Topics in Neurotoxicity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-20273-0_12

Download citation

Publish with us

Policies and ethics