Skip to main content

Liquid Crystalline Polymer Composites for Optoelectronics

  • Chapter
Liquid Crystalline Polymers
  • 1728 Accesses

Abstract

Because of the particular type of domain texture observed in the melt state of synthetic liquid crystalline polymers, rheology of liquid crystalline polymer is quite complex. Formation of composite materials by synthetic liquid crystalline material remarkably improves mechanical properties, thermal stability and tensile behavior of the resulting material. This sort of structural modification can be quite significant when potential applicability of such materials is concerned. In this chapter structural aspects of liquid crystalline polymer composite materials are analyzed with respect to their applicability especially in the field of micro-electronics and opto-electronics. Liquid crystalline polymer composites are considered as novel class of materials which are likely to have wide range of applications in the field of electronics. Structural diversity of such polymeric systems is discussed along with the pattern of classification. Discussions on application prospects of liquid crystalline polymer based blends are also included. Liquid crystalline polymer nanocomposites and their application in the field of organic nanophotonics are also included in this chapter. The phenomenon of self-assembly in liquid crystalline polymer nanocomposite is described here along with discussions on Inorganic organic Polymer dispersed liquid crystalline polymer nanocomposite. Finally international trends in Liquid crystalline polymer composite are highlighted along with recent advancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahir SV, Squires AM, Tajbakhsh AR, Terentjev EM (2006) Infrared actuation in aligned polymer-nanotube composites. Phys Rev B 73:085420:1–085420:12

    Article  Google Scholar 

  • Ajayan PM, Tour J (2007) Nanotube composites. Nature 447:1066–1068

    Article  Google Scholar 

  • Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110:1857–1959

    Article  Google Scholar 

  • Bang CU, Shishido A, Ikeda T (2007) Azobenzene liquid-crystalline polymer for optical switching of grating waveguide couplers with a flat surface. Macromol Rapid Commun 28:1040–1044

    Article  Google Scholar 

  • Bauer S, Fischer H, Ringsdorf H (1993) Highly branched liquid crystalline polymers with chiral terminal groups. Angew Chem Int Ed Engl 32:1589–1592

    Article  Google Scholar 

  • Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes: the route toward applications. Science 297:787–792

    Article  Google Scholar 

  • Boiko N, Zhu X, Vinokur R, Rebrov E, Muzafarov A, Shibaev V (2000) New carbosilane ferroelectric liquid crystalline dendrimers. Mol Cryst Liq Cryst 352:342–350

    Article  Google Scholar 

  • Botiz I, Stingelin N (2014) Influence of molecular conformations and microstructure on the optoelectronic properties of conjugated polymers. Materials 7:2273–2300

    Article  Google Scholar 

  • Bunning TJ, Natarajan LV, Tondiglia VP, Sutherland RL (2000) Holographic polymer dispersed liquid crystals (HPDLCs). Annu Rev Mater Sci 30:83–115

    Article  Google Scholar 

  • Busch K, John S (1999) Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum. Phys Rev Lett 83:967–970

    Article  Google Scholar 

  • Busson P, Ihre H, Hult A (1998) Synthesis of a novel dendritic liquid crystalline polymer showing a ferroelectric SmC* phase. J Am Chem Soc 120:9070–9071

    Article  Google Scholar 

  • Calundann GW (1980) Melt processable thermotropic wholly aromatic polyester. US Patents 4184996

    Google Scholar 

  • Candiani A, Margulis W, Sterner C, Konstantaki M, Pissadakis S (2011) Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids. Opt Lett 36:2548–2550

    Article  Google Scholar 

  • Cao WY, Munoz A, Palffy-Muhoray P, Taheri B (2002) Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat Mater 1:111–113

    Article  Google Scholar 

  • Carfagna C, Amendola E, Nicolais L, Acierno D, Francescangeli O, Yang B, Rustichelli F (1991) Blends of a polyetherimide and a liquid crystalline polymer: fiber orientation and mechanical properties. J Appl Polym Sci 43:839–844

    Article  Google Scholar 

  • Chambers M, Finkelmann H, Remškar M, Sánchez-Ferrer A, Zalar B, Ţumer S (2009) Liquid crystal elastomer–nanoparticle systems for actuation. J Mater Chem 19:1524–1531

    Article  Google Scholar 

  • Chen Y, Wu ST (2014) Recent advances on polymer-stabilized blue phase liquid crystal materials and devices. J Appl Polym Sci 40556:1–10

    Google Scholar 

  • Cheng HKF, Sahoo NG, Li L, Chan SH, Zhao J (2010) Molecular interactions in PA6, LCP and their blend incorporated with functionalized carbon nanotubes. Key Eng Mater 447:634–638

    Article  Google Scholar 

  • Cheng HKF, Basu T, Sahoo NG, Li L, Chan SH (2012) Current advances in the carbon nanotube/thermotropic main-chain liquid crystalline polymer nanocomposites and their blends. Polymers 4:889–912

    Article  Google Scholar 

  • Chung TS, Calundann GW, East AJ (1989) Liquid-crystalline polymers and their applications. In: Chermisinoff NP (ed) Encyclopaedia of engineering materials, vol 2. Marcel Dekker, New York, pp 625–675

    Google Scholar 

  • Collings PJ (1990) Liquid crystals: nature’s delicate phase of matter. Princeton University Press, Princeton, pp 149–167

    Google Scholar 

  • Collins PJ (2005) Liquid crystalline materials. In: Kirk-Othmer encyclopaedia of chemical technology, 5th edn, vol. 15. Wiley, Hoboken, pp 81–120

    Google Scholar 

  • Collyer AA (1989) Thermotropic liquid crystal polymers for engineering applications. Mater Sci Technol 5:309–322

    Article  Google Scholar 

  • Courty S, Mine J, Tajbakhsh AR, Terentjev EM (2003) Nematic elastomers with aligned carbon nanotubes: new electromechanical actuators. Europhys Lett 64:654–660

    Article  Google Scholar 

  • Culbertson EC (1995) A new laminate material for high performance PCBs: liquid crystal polymer copper clad films. In: Proceedings of the 45th electronic components and technology conference. p 520–523

    Google Scholar 

  • Domenici V, Zupančič B, Laguta VV, Belous AG, V’yunov OI, Remškar M, Zalar B (2010) PbTiO3 nanoparticles embedded in a liquid crystalline elastomer matrix: structural and ordering properties. J Phys Chem C 114:10782–11078

    Article  Google Scholar 

  • Domenici V, Conradi M, Remškar M, Viršek M, Zupančič B, Mrzel A, Chambers M, Zalar B (2011) New composite films based on MoO3−x nanowires aligned in a liquid single crystal elastomer matrix. J Mater Sci 46:3639–3645

    Article  Google Scholar 

  • Donio B, Buathong S, Bury I, Gullion D (2007) Liquid crystalline dendrimer. Chem Soc Rev 36(9):1495–1513

    Article  Google Scholar 

  • Drazic PS (1995) Liquid crystal dispersions. World Scientific, Singapore

    Book  Google Scholar 

  • Dufresne A (2006) Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J Nanosci Nanotechnol 6:322–330

    Google Scholar 

  • Dutta D, Weiss RA, Kristal K (1992) Blends containing liquid crystalline polymers: preparation and properties of melt drawn fibers, unidirectional prepregs and composite laminates. Polym Compos 13:394–401

    Article  Google Scholar 

  • Emoto A, Uchida E, Fukuda T (2012) Optical and physical applications of photocontrollable materials: azobenzene-containing and liquid crystalline polymers. Polymers 4:150–186

    Article  Google Scholar 

  • Ericson LM, Fan H, Peng HQ, Davis VA, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C et al (2004) Macroscopic, neat, single-walled carbon nanotube fibers. Science 305:1447–1450

    Article  Google Scholar 

  • Etchegoin P (2000) Blue phases of cholesteric liquid crystals as thermotropic photonic crystals. Phys Rev E 62:1435–1437

    Article  Google Scholar 

  • Fan Y-H, Ren H, Wu ST (2003) Switchable Fresnel lens using polymer-stabilized liquid crystals. Opt Express 11:3080–3086

    Article  Google Scholar 

  • Frechet JMJ, Tomalia DA (eds) (2001) Dendrimers and other dendritic polymers, Wiley series in polymeric sciences. Wiley, New York

    Google Scholar 

  • Godovskii YK, Papkov VS (1992) Chapter 4. In: Plate NA (ed) Liquid crystal polymers. Plenum Press, New York, p 125

    Google Scholar 

  • Gunduz B (2015) Sensing and surface morphological properties of a poly [(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] liquid crystalline polymer for optoelectronic applications. J Appl Polym Sci 132:41659 (1–8)

    Google Scholar 

  • Hearle JWS (2001) High performance fibers. Woodhead, Philadelphia, p 329

    Book  Google Scholar 

  • Himmelberger S, Vandewal K, Fei Z, Heeney M, Salleo A (2014) Role of molecular weight distribution on charge transport in semiconducting polymers. Macromolecules 47(20):7151–7157

    Article  Google Scholar 

  • Huang YY, Terentjev EM (2010) Tailoring the electrical properties of carbon nanotube–polymer composites. Adv Funct Mater 20:4062–4068

    Article  Google Scholar 

  • Jayaraj K, Farrell B (1998) Liquid crystal polymers and their role in electronic packaging. Adv Microelectron 25:15–18

    Google Scholar 

  • Ji Y, Huang YY, Rungsawang R, Terentjev EM (2010) Dispersion and alignment of carbon nanotubes in liquid crystalline polymers and elastomers. Adv Mater 22:3436–3440

    Article  Google Scholar 

  • Ji Y, Marshall JE, Terentjev EM (2012) Nanoparticle-liquid crystalline elastomer composite. Polymers 4:316–340

    Article  Google Scholar 

  • Jose JP, Malhotra SK, Thomas S, Joseph K, Goda K, Sreekala MS (2012) Advances in polymer composites: macro- and microcomposites—state of the art, new challenges, and opportunities. In: Jose JP, Malhotra SK, Thomas S, Joseph K, Goda K, Sreekala MS (eds) Polymer composites, vol 1, 1st edn. Wiley, Hoboken

    Google Scholar 

  • Kachidza J, Serpe G, Economy J (1992) Ordering processes in the 2,6-hydroxynaphthoic acid (HNA) rich copolyesters of p-hydroxybenzoic acid and HNA. Makromol Chem Macromol Symp 53:65–75

    Article  Google Scholar 

  • Kaiser A, Winkler M, Krause S, Finkelmann H, Schmidt AM (2009) Magnetoactive liquid crystal elastomer nanocomposites. J Mater Chem 19:538–543

    Article  Google Scholar 

  • Karapinar R, O’Neill M, Hird M (2002) Polymer dispersed ferroelectric liquid crystal films with high electro-optic quality. J Phys D Appl Phys 35(9):900–905

    Article  Google Scholar 

  • Khoo CGL, Brox B, Norrhede R, Maurer FHJ (1997) Effect of copper lamination on the rheological and copper adhesion properties of a thermotropic liquid crystalline polymer used in PCB applications. IEEE Trans Compon Packaging Manuf Technol 20:219–226

    Article  Google Scholar 

  • Kikuchi H, Yokota M, Hisakado Y, Yang H, Kajiyama T (2002) Polymer-stabilized liquid crystal blue phases. Nat Mater 1:64–68

    Article  Google Scholar 

  • Kiss G (1987) In situ composites: blends of isotropic polymers and thermotropic liquid crystalline polymers. Polym Eng Sci 27:410–423

    Article  Google Scholar 

  • Kwolek SL (1971) Poly-(p-benzamide) composition, process and product. US Patent 3600350

    Google Scholar 

  • Lagerwall JPF, Scalia G (2012) A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr Appl Phys 12:1387–1412

    Article  Google Scholar 

  • Lagerwall JPF, Schütz C, Salajkova M, Noh JH, Hyun Park J, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:1–12

    Article  Google Scholar 

  • Lewis KL, Mason IR, Sage I, Lymer KP, Smith GW (2000) Nanodispersed liquid crystal polymer composites for optically tunable filters. In: Proc. SPIE 4104, organic photorefractives, photoreceptors and nanocomposites, 9

    Google Scholar 

  • Li JL, Crandall KA, Chu P, Percec V, Petschek RG, Rosenblatt C (1996) Dendrimeric liquid crystals: isotropic−nematic pretransitional behavior. Macromolecules 29:7813–7819

    Article  Google Scholar 

  • Lin YG, Winter HH (1991) High-temperature recrystallization and rheology of a thermotropic liquid crystalline polymer. Macromolecules 24:2877–2882

    Article  Google Scholar 

  • Lin Q, Yee AF (1994) Elastic modulus of in-situ composites of a liquid crystalline polymer and polycarbonate. Polym Compos 15:156–162

    Article  Google Scholar 

  • Lin Q, Jho JY, Yee AF (1993) Effect of drawing on structure and properties of a liquid crystalline polymer and polycarbonate in situ composite. Polym Eng Sci 33:789–798

    Article  Google Scholar 

  • Liu YJ, Sun XW (2008) Holographic polymer-dispersed liquid crystals: materials, formation, and applications. Adv Optoelectron. 2008. Article ID 684349, 52 pages

    Google Scholar 

  • Matharu AS, Jeeva S, Ramanujam PS (2007) Liquid crystals for holographic optical data storage. Chem Soc Rev 36:1868–1880

    Article  Google Scholar 

  • Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN, Yunura M, Hata KA (2009) A black body absorber from vertically aligned single-walled carbon nanotubes. Proc Natl Acad Sci U S A 106:6044–6047

    Article  Google Scholar 

  • Pegoretti A, Traina M (2009) Liquid crystalline organic fibres and their mechanical behaviour. In: Bunsell AR (ed) Handbook of tensile properties of textile and technical fibres. Woodhead Publishing, Cambridge, pp 354–436

    Chapter  Google Scholar 

  • Percec V, Kawasumi M (1992) Synthesis and characterization of a thermotropic nematic liquid crystalline dendrimeric polymer. Macromolecules 25:3843–3850

    Article  Google Scholar 

  • Percec V, Chu P, Ungar G, Zhou J (1995) Rational design of the first nonspherical dendrimer which displays calamitic nematic and smectic thermotropic liquid crystalline phases. J Am Chem Soc 117:11441–11454

    Article  Google Scholar 

  • Puzari A (2012) Chapter 4: liquid crystalline dendrimer: towards intelligent functional materials. In: Iwan A, Schab-Balcerzak E (eds) Liquid crystalline organic compounds and polymers as materials XXI century: from synthesis to application. Transworld Research Network, Trivandrum, pp 95–124

    Google Scholar 

  • Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  Google Scholar 

  • Sahoo NG, Cheng HKF, Cai J, Li L, Chan SH, Zhao J, Yu S (2009a) Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods. Mater Chem Phys 117:313–320

    Article  Google Scholar 

  • Sahoo NG, Cheng HKF, Li L, Chan SH, Judeh Z, Zhao J (2009b) Specific functionalization of carbon nanotubes for advanced polymer nanocomposites. Adv Funct Mater 19:3962–3971

    Article  Google Scholar 

  • Sahoo NG, Thet NT, Tan QH, Li L, Chan SH, Zhao J, Yu S (2009c) Effect of carbon nanotubes and processing methods on the properties of carbon nanotube/polypropylene composites. J Nanosci Nanotechnol 9:5910–5919

    Article  Google Scholar 

  • Sahoo NG, Cheng HKF, Bao H, Pan Y, Li L, Chan SH, Zhao J (2011a) Covalent functionalization of carbon nanotubes for ultimate intermolecular adhesion to liquid crystalline polymer. Soft Matter 7:9505–9514

    Article  Google Scholar 

  • Sahoo NG, Cheng HKF, Bao H, Li L, Chan SH, Zhao J (2011b) Nitrophenyl functionalization of carbon nanotubes and its effect on properties of MWCNT/LCP composites. Macromol Res 19:660–667

    Article  Google Scholar 

  • Salajkova M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22:19798–19805

    Article  Google Scholar 

  • Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley R (2003) Single-wall carbon nanotube films. Chem Mater 15:175–178

    Article  Google Scholar 

  • Steckman GJ, Bittner R, Meerholz K, Psaltis D (2000) Holographic multiplexing in photorefractive polymer. Opt Commun 185:13–17

    Article  Google Scholar 

  • Sun X, Sun H, Peng H (2013) Developing polymer composite materials: carbon nanotubes or graphene? Adv Mater 25(37):5153–5176

    Article  Google Scholar 

  • Thomas EL, Wood BA (1985) Mesophase texture and defects in thermotropic liquid crystalline polymers. Faraday Discuss Chem Soc 79:229–239

    Article  Google Scholar 

  • Tjong SC (2003) Structure, morphology, mechanical and thermal characteristics of the in situ composites based on liquid crystalline polymers and thermoplastics. Mater Sci Eng R 41:1–60

    Article  Google Scholar 

  • Van Boxtel M, Broer D, Bastian Sen C, Baars M, Janssen R (2000) Electro-optical switches based on polymer and dendrimer filled nematics. Macromol Symp 154:25–35

    Article  Google Scholar 

  • Vyas R, Rida A, Bhattacharya S, Tentzeris MM (2007) Liquid crystal polymer (LCP): the ultimate solution for low-cost RF flexible electronics and antennas. In: Proceedings of the polymers in defence and aerospace applications, Toulouse, France, 18–19 Sept 2007. Smithers Rapra Technology, Shropshire; 2007; Section 6, p 21

    Google Scholar 

  • Wang X, Engel J, Liu C (2003) Liquid crystal polymer (LCP) for MEMS: processes and applications. J Micromech Microeng 13:628–633

    Article  Google Scholar 

  • Warner M, Terentjev EM (2007) Liquid crystal elastomers. Oxford University Press, Oxford

    Google Scholar 

  • Wermter H, Finkelmann H (2001) Liquid crystalline elastomers as artificial muscles. e-Polymers 13:1–13

    Google Scholar 

  • Winiarz JG, Prasad PN (2002) Photorefractive inorganic–organic polymer-dispersed liquid-crystal nanocomposites photosensitized with cadmium sulfide quantum dots. Opt Lett 27:1330–1332

    Article  Google Scholar 

  • Winiarz JG, Zhang L, Lal M, Friend CS, Prasad PN (1999) Photogeneration, charge transport, and photoconductivity of a novel PVK/CdS–nanocrystal polymer composite. Chem Phys 245:417–428

    Article  Google Scholar 

  • Woo HS, Czerw R, Webster S, Carroll DL, Park JW, Lee JH (2001) Organic light emitting diodes fabricated with single walled carbon nanotubes dispersed in hole conducting buffer: the role of carbon nanotubes in a hole conducting polymer. Synth Met 116:369–372

    Article  Google Scholar 

  • Wurthner F, Wortmann R, Meerholz K (2002) Chromophore design for photorefractive organic materials. Chemphyschem 3:17–31

    Article  Google Scholar 

  • Yan J, Wu ST (2011) Polymer stabilized blue phase liquid crystals: a tutorial. Opt Mater Express 1(8):1527–1535

    Article  Google Scholar 

  • Yan J, Li Y, Wu ST (2011) High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal. Opt Lett 36:1404–1406

    Article  Google Scholar 

  • Yu H, Ikeda T (2011) Photocontrollable liquid-crystalline actuators. Adv Mater 23:2149–2180

    Article  Google Scholar 

  • Zhang YP, Chodavarapu VP, Kirk AG, Andrews MP (2012) Nanocrystalline cellulose for covert optical encryption. In: Proc. SPIE 8258, organic photonic materials and devices XIV 8258, 825808

    Google Scholar 

  • Zito G, Pissadakis S (2013) Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber. Opt Lett 38:3253–3256

    Article  Google Scholar 

  • Zito G, Piccirillo B, Santamato E, Marino A, Tkachenko V, Abbate G (2008) Two-dimensional photonic quasicrystals by single beam computer-generated holography. Opt Express 16:5164–5170

    Article  Google Scholar 

Download references

Acknowledgements

I am delighted to acknowledge the help and support I received from Dr. Sidananda Sharma, Sr. Scientific Officer, IIT Guwahati and Mr. Alok Ranjan, Research Scholar, Singapore University of Technology and Development (SUTD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrit Puzari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Puzari, A. (2015). Liquid Crystalline Polymer Composites for Optoelectronics. In: Thakur, V., Kessler, M. (eds) Liquid Crystalline Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-20270-9_13

Download citation

Publish with us

Policies and ethics