Advertisement

Context-Aware User Modeling Strategies for Journey Plan Recommendation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9146)

Abstract

Popular journey planning systems, like Google Maps or Yahoo! Maps, usually ignore user’s preferences and context. This paper shows how we applied context-aware recommendation technologies in an existing journey planning mobile application to provide personalized and context-dependent recommendations to users. We describe two different strategies for context-aware user modeling in the journey planning domain. We present an extensive performance comparison of the proposed strategies by conducting a user-centric study in addition to a traditional offline evaluation method.

Keywords

Recommender systems Context-awareness Personalized journey planning User-centric evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-aware recommender systems. AI Magazine 32(3), 67–80 (2011)Google Scholar
  2. 2.
    Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context relevance assessment and exploitation in mobile recommender systems. Personal and Ubiquitous Computing 16(5), 507–526 (2012)CrossRefGoogle Scholar
  3. 3.
    Campos, P.G., Fernández-Tobías, I., Cantador, I., Díez, F.: Context-aware movie recommendations: an empirical comparison of pre-filtering, post-filtering and contextual modeling approaches. In: Huemer, C., Lops, P. (eds.) EC-Web 2013. LNBIP, vol. 152, pp. 137–149. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Codina, V., Oliva, L.: Contextual modeling content-based approaches for new-item recommendation. In: IIiX 2014, pp. 259–262. ACM (2014)Google Scholar
  5. 5.
    Codina, V., Ricci, F., Ceccaroni, L.: Distributional semantic pre-filtering in context-aware recommender systems. User Model User-Adapt. Interact. Springer (2015). doi: 10.1145/2542668
  6. 6.
    Knijnenburg, B.P., Willemsen, M.C., Kobsa, A.: A pragmatic procedure to support the user-centric evaluation of recommender systems. In: RecSys 2011, pp. 321–324 (2011)Google Scholar
  7. 7.
    Koenigstein, N., Dror, G., Koren, Y.: Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy. In: RecSys 2011, pp. 165–172. ACM (2011)Google Scholar
  8. 8.
    Koren, Y., Bell, R.: Advances in collaborative filtering. In: Recommender Systems Handbook, pp. 145–186. Springer (2011)Google Scholar
  9. 9.
    Hrncir, J., Jakob, M.: Generalised time-dependent graphs for fully multimodal journey planning. In: Proceedings of IEEE Intelligent Transportation Systems Conference (ITSC), pp. 2138–2145 (2013)Google Scholar
  10. 10.
    Hsieh, H.-P., Li, C.-T., Lin, S.-D.: Measuring and Recommending Time-Sensitive Routes from Location-Based Data. ACM Transactions on Intelligent Systems and Technology 5(3), 1–27 (2014)CrossRefGoogle Scholar
  11. 11.
    Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Combining distributional semantics and entity linking for context-aware content-based recommendation. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.-J. (eds.) UMAP 2014. LNCS, vol. 8538, pp. 381–392. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Nguyen, T., Wu, B.: Random and Fuzzy Sets in Coarse Data Analysis. Comput. Stat. Data Anal. 51(1), 70–85 (2006). Elsevier Science Publishers B.VzbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Panniello, U., Tuzhilin, A., Gorgoglione, M., Palmisano, C., Pedone, A.: Comparing context-aware recommender systems in terms of accuracy and diversity. User Model User-Adapt. Interact. 24(1–2), 35–65 (2014)CrossRefGoogle Scholar
  14. 14.
    Ricci, F.: Travel recommender systems. IEEE Intelligent Systems 17(6), 55–57 (2002)Google Scholar
  15. 15.
    Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems. In: Recommender Systems Handbook, pp. 1–35. Springer (2011)Google Scholar
  16. 16.
    Shani, G., Gunawardana, A.: Evaluating recommendation systems. Recommender Systems Handbook, pp. 257–297. Springer (2011)Google Scholar
  17. 17.
    Tumas, G., Ricci, F.: Personalized mobile city transport advisory system. In: Information and Communication Technologies in Tourism, pp. 173–183. Springer (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Barcelona Digital Technology CenterBarcelonaSpain
  2. 2.Technical University of CataloniaBarcelonaSpain

Personalised recommendations