International Conference on User Modeling, Adaptation, and Personalization

UMAP 2015: User Modeling, Adaptation and Personalization pp 350-356 | Cite as

Understanding Real-Life Website Adaptations by Investigating the Relations Between User Behavior and User Experience

  • Mark P. Graus
  • Martijn C. Willemsen
  • Kevin Swelsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9146)


We study how a website adaptation based on segment predictions from click streams affects visitor behavior and user experience. Through statistical analysis we investigate how the adaptation changed actual behavior. Through structural equation modeling of subjective experience we answer why the change in behavior occurred. The study shows the value of using survey data for constructing and evaluating predictive models. It additionally shows how a website adaptation influences user experience and how this in turn influences visitor behavior.


Online adaptation Visitor behavior User experience Online behavior Online segmentation Structural equation modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akaike, H.: A new look at the statistical model identification. IEEE Transactionson Automatic Control 19(6), 716–723 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Cohen, J., Cohen, P., West, S.G., Aiken, L.S.: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd edn. Routledge, August 2002Google Scholar
  3. 3.
    Ekstrand, M.D., Harper, F.M., Willemsen, M.C., Konstan, J.A.: User perception of differences in recommender algorithms. In: Proceedings of the 8th ACM Conference on Recommender systems - RecSys 2014, pp. 161–168 (2014)Google Scholar
  4. 4.
    Hauser, J.R., Urban, G.L., Liberali, G., Braun, M.: Website Morphing. Marketing Science 28(2), 202–223 (2009)CrossRefGoogle Scholar
  5. 5.
    Knijnenburg, B., Willemsen, M., Gantner, Z., Soncu, H., Newell, C.: Explaining the user experience of recommender systems. User Modeling and User-Adapted Interaction 22(4–5), 441–504 (2012)CrossRefGoogle Scholar
  6. 6.
    Knijnenburg, B.P., Willemsen, M.C., Hirtbach, S.: Receiving recommendations and providing feedback: the user-experience of a recommender system. In: Buccafurri, F., Semeraro, G. (eds.) EC-Web 2010. LNBIP, vol. 61, pp. 207–216. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  7. 7.
    Moe, W.W., Fader, P.S.: Dynamic Conversion Behavior at E-Commerce Sites. Management Science 50(3), 326–335 (2004)CrossRefGoogle Scholar
  8. 8.
    Moe, W.W., Fader, P.S.: Which visits lead to purchases? Dynamic conversion behavior at e-commerce sites. University of Texas, February, 2001Google Scholar
  9. 9.
    Muthén, L.K., Muthén, B.O.: Mplus User’s Guide (2012)Google Scholar
  10. 10.
    Smith, W.R.: Product differentiation and market segmentation as alternative marketing strategies. The Journal of Marketing 21(1), 3–8 (1956)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mark P. Graus
    • 1
  • Martijn C. Willemsen
    • 1
  • Kevin Swelsen
    • 1
  1. 1.Human-Technology Interaction GroupEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations