Skip to main content

The Mars and Venus Effect: The Influence of User Gender on the Effectiveness of Adaptive Task Support

Part of the Lecture Notes in Computer Science book series (LNISA,volume 9146)

Abstract

Providing adaptive support to users engaged in learning tasks is the central focus of intelligent tutoring systems. There is evidence that female and male users may benefit differently from adaptive support, yet it is not understood how to most effectively adapt task support to gender. This paper reports on a study with four versions of an intelligent tutoring system for introductory computer programming offering different levels of cognitive (conceptual and problem-solving) and affective (motivational and engagement) support. The results show that female users reported significantly more engagement and less frustration with the affective support system than with other versions. In a human tutorial dialogue condition used for comparison, a consistent difference was observed between females and males. These results suggest the presence of the Mars and Venus Effect, a systematic difference in how female and male users benefit from cognitive and affective adaptive support. The findings point toward design principles to guide the development of gender-adaptive intelligent tutoring systems.

Keywords

  • Gender effects
  • Adaptive support
  • Intelligent tutoring systems
  • Affect
  • Engagement
  • Frustration

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-20267-9_22
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-20267-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arroyo, I., Burleson, W., Minghui, T., Muldner, K., Woolf, B.P.: Gender Differences in the Use and Benefit of Advanced Learning Technologies for Mathematics. Journal of Educational Psychology 105(4), 957–969 (2013)

    CrossRef  Google Scholar 

  2. Arroyo, I., Woolf, B.P., Cooper, D.G., Burleson, W., Muldner, K.: The impact of animated pedagogical agents on girls’ and boys’ emotions, attitudes, behaviors and learning. In: Proceedings of the 11th International Conference on Advanced Learning Technologies, pp. 506–510. IEEE, Athens (2011)

    Google Scholar 

  3. Baker, R.S.J., D’Mello, S.K., Rodrigo, M.T., Graesser, A.C.: Better to Be Frustrated Than Bored: The Incidence, Persistence, and Impact of Learners’ Cognitive-affective States During Interactions with Three Different Computer-based Learning Environments. International Journal of Human-Computer Studies 68(4), 223–241 (2010)

    CrossRef  Google Scholar 

  4. Belk, M., Germanakos, P., Fidas, C., Samaras, G.: A personalization method based on human factors for improving usability of user authentication tasks. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.-J. (eds.) UMAP 2014. LNCS, vol. 8538, pp. 13–24. Springer, Heidelberg (2014)

    Google Scholar 

  5. Bloom, B.S.: The 2 Sigma Problem: The Search for Methods of Group Instruction as Effective as One-to-One Tutoring. Educational Researcher 13(6), 4–16 (1984)

    CrossRef  Google Scholar 

  6. Bousbia, N., Rebaï, I., Labat, J.M., Balla, A.: Learners’ navigation behavior identification based on trace analysis. User Modelling and User-Adapted Interaction 20(5), 455–494 (2010)

    CrossRef  Google Scholar 

  7. Bouvier, P., Sehaba, K., Lavoué, E.: A trace-based approach to identifying users engagement and qualifying their engaged-behaviours in interactive systems: application to a social game. User Modeling and User-Adapted Interaction 24(5), 413–451 (2014)

    CrossRef  Google Scholar 

  8. Boyer, K.E., Phillips, R., Wallis, M., Vouk, M.A., Lester, J.C.: Balancing cognitive and motivational scaffolding in tutorial dialogue. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 239–249. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  9. Boyer, K.E., Vouk, M.A., Lester, J.C.: The influence of learner characteristics on task-oriented tutorial dialogue. In: Proceedings of the 13th International Conference on Artificial Intelligence in Education, pp. 365–372. IOS Press, Marina Del Rey (2007)

    Google Scholar 

  10. Burleson, W., Picard, R.W.: Gender-specific approaches to developing emotionally intelligent learning companions. IEEE Intelligent Systems 22(4), 62–69 (2007)

    CrossRef  Google Scholar 

  11. Chi, M., VanLehn, K., Litman, D.J., Jordan, P.W.: Empirically evaluating the application of reinforcement learning to the induction of effective and adaptive pedagogical strategies. User Modelling and User-Adapted Interaction 21(1–2), 137–180 (2011)

    CrossRef  Google Scholar 

  12. Cohen, P.R., Perrault, C.R., Allen, J.F.: Beyond question answering. In: Strategies for Natural Language Processing, chap. 9, pp. 245–274. Psychology Press, New York (1982)

    Google Scholar 

  13. Cordick, A., McCuaig, J.: Adaptive tips for helping domain experts. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 397–402. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  14. Craig, S.D., Graesser, A.C., Sullins, J., Gholson, B.: Affect and learning: An exploratory look into the role of affect in learning with AutoTutor. Journal of Educational Media 29(3), 241–250 (2004)

    CrossRef  Google Scholar 

  15. Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Cambridge University Press, New York (1990)

    Google Scholar 

  16. Dennis, M., Masthoff, J., Mellish, C.: Adapting performance feedback to a learner’s conscientiousness. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 297–302. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  17. Desmarais, M.C., Baker, R.S.J.: A review of recent advances in learner and skill modeling in intelligent learning environments. User Modelling and User-Adapted Interaction 22(1–2), 9–38 (2012)

    CrossRef  Google Scholar 

  18. Goldin, I.M., Carlson, R.: Learner differences and hint content. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 522–531. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  19. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Advances in Psychology 52, 139–183 (1988)

    CrossRef  Google Scholar 

  20. Jackson, G.T., Graesser, A.C.: Content matters: an investigation of feedback categories within an ITS. In: Proceedings of the 13th International Conference on Artificial Intelligence in Education, pp. 127–134. Los Angeles, California, USA (2007)

    Google Scholar 

  21. Mitchell, C.M., Ha, E.Y., Boyer, K.E., Lester, J.C.: Learner characteristics and dialogue: recognising effective and student-adaptive tutorial strategies. International Journal of Learning Technology 8(4), 382–403 (2013)

    CrossRef  Google Scholar 

  22. Mitrovic, A.: Fifteen years of constraint-based tutors: What we have achieved and where we are going. User Modelling and User-Adapted Interaction 22(1–2), 39–72 (2012)

    CrossRef  Google Scholar 

  23. Muldner, K., Burleson, W., Van de Sande, B., VanLehn, K.: An analysis of students gaming behaviors in an intelligent tutoring system: predictors and impacts. User Modeling and User-Adapted Interaction 21(1–2), 99–135 (2011)

    CrossRef  Google Scholar 

  24. O’Brien, H.L., Toms, E.G.: The development and evaluation of a survey to measure user engagement. Journal of the American Society for Information Science and Technology 61(1), 50–69 (2010)

    CrossRef  Google Scholar 

  25. Pirolli, P., Kairam, S.: A knowledge-tracing model of learning from a social tagging system. User Modeling and User-Adapted Interaction 23(2–3), 139–168 (2013)

    CrossRef  Google Scholar 

  26. Rahimi, Z., Hashemi, H.B.: Turn-taking behavior in a human tutoring corpus. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 778–782. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  27. San Pedro, M.O.Z., Baker, R.S.J., Gowda, S.M., Heffernan, N.T.: Towards an understanding of affect and knowledge from student interaction with an intelligent tutoring system. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 41–50. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  28. Su, J.M., Tseng, S.S., Lin, H.Y., Chen, C.H.: A personalized learning content adaptation mechanism to meet diverse user needs in mobile learning environments. User Modeling and User-Adapted Interaction 21(1–2), 5–49 (2011)

    CrossRef  Google Scholar 

  29. Vail, A.K., Boyer, K.E.: Adapting to personality over time: examining the effectiveness of dialogue policy progressions in task-oriented interaction. In: Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pp. 41–50. Philadelphia, Pennsylvania, USA (2014)

    Google Scholar 

  30. VanLehn, K., Graesser, A.C., Jackson, G.T., Jordan, P.W., Olney, A., Rosé, C.P.: When Are Tutorial Dialogues More Effective Than Reading? Cognitive Science 31(1), 3–62 (2007)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandria Katarina Vail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vail, A.K., Boyer, K.E., Wiebe, E.N., Lester, J.C. (2015). The Mars and Venus Effect: The Influence of User Gender on the Effectiveness of Adaptive Task Support. In: Ricci, F., Bontcheva, K., Conlan, O., Lawless, S. (eds) User Modeling, Adaptation and Personalization. UMAP 2015. Lecture Notes in Computer Science(), vol 9146. Springer, Cham. https://doi.org/10.1007/978-3-319-20267-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20267-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20266-2

  • Online ISBN: 978-3-319-20267-9

  • eBook Packages: Computer ScienceComputer Science (R0)