Advertisement

Towards a Recommender Engine for Personalized Visualizations

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9146)

Abstract

Visualizations have a distinctive advantage when dealing with the information overload problem: since they are grounded in basic visual cognition, many people understand them. However, creating them requires specific expertise of the domain and underlying data to determine the right representation. Although there are rules that help generate them, the results are too broad to account for varying user preferences. To tackle this issue, we propose a novel recommender system that suggests visualizations based on (i) a set of visual cognition rules and (ii) user preferences collected in Amazon-Mechanical Turk. The main contribution of this paper is the introduction and the evaluation of a novel approach called VizRec that can suggest an optimal list of top-n visualizations for heterogeneous data sources in a personalized manner.

Keywords

Personalized visualizations Visualization recommender Recommender systems Collaborative filtering Crowd-sourcing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.A.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41, 391–407 (1990)CrossRefGoogle Scholar
  2. 2.
    Xiaoyuan, S., Khoshgoftaar, T.M.: A Survey of Collaborative Filtering Techniques. Adv. in Artif. Intell. (2009)Google Scholar
  3. 3.
    Bertin, J.: Semiology of graphics. University of Wisconsin Press (1983)Google Scholar
  4. 4.
    Voigt, M., Franke, M., Meissner, K.: Using and empirical knowledge for context-aware recommendation of visualization components. In: Proc. of eKnow 2012 (2012)Google Scholar
  5. 5.
    Schelter, S., Owen, S.: Collaborative filtering with apache mahout. In: RecSysChallenge 2012 (2012)Google Scholar
  6. 6.
    Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Trans. Graph., 110–141 (1986)Google Scholar
  7. 7.
    Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. The VLDB Journal (2001)Google Scholar
  8. 8.
    Mackinlay, J., Hanrahan, P., Stolte, Ch.: Show Me: Automatic Presentation for Visual Analysis. IEEE Transactions on Visualization and Computer Graphics, 1137–1144 (2007)Google Scholar
  9. 9.
    Nazemi, K., Retz, R., Bernard, J., Kohlhammer, J., Fellner, D.: Adaptive semantic visualization for bibliographic entries. In: Bebis, G. (ed.) ISVC 2013, Part II. LNCS, vol. 8034, pp. 13–24. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Seffah, A., Donyaee, M., Kline, R., Padda, H.: Usability measurement and metrics: A consolidated model. Software Quality Journal, 159–178 (2006)Google Scholar
  11. 11.
    Ahn, J., Brusilovsky, P.: Adaptive Visualization of Search Results: Bringing User Models to Visual Analytics. Information Visualization, 167–179 (2009)Google Scholar
  12. 12.
    Zheng, X.S., Lin, J.J.W., Zapf, S., Knapheide, C.: Visualizing user experience through “Perceptual Maps”: concurrent assessment of perceived usability and subjective appearance in car infotainment systems. In: Duffy, V.G. (ed.) HCII 2007 and DHM 2007. LNCS, vol. 4561, pp. 536–545. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  13. 13.
    Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing user studies with mechanical turk. In: Proc. of CHI 2008 (2008)Google Scholar
  14. 14.
    Mutlu, B., Hoefler, P., Tschinkel, G., Sabol, V., Granitzer, M., Stegmaier, F.: Suggesting visualizations for published data. In: Proc. of VISIGRAPP 2014 (2014)Google Scholar
  15. 15.
    Trattner, C., Kowald, D., Lacic, E.: TagRec: Towards a Toolkit for Reproducible Evaluation and Development of Tag-Based Recommender Algorithms. ACM SIGWEB Newsletter (2015)Google Scholar
  16. 16.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)CrossRefGoogle Scholar
  17. 17.
    Jaeschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in social bookmarking systems. Ai Communications 21(4), 231–247 (2008)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Know-Center GmbHGrazAustria

Personalised recommendations