Skip to main content

Lorentz Breaking Effective Field Theory Models for Matter and Gravity: Theory and Observational Constraints

  • Chapter
  • First Online:
Gravity: Where Do We Stand?

Abstract

A number of different approaches to quantum gravity are at least partly phenomenologically characterized by their treatment of Lorentz symmetry, in particular whether the symmetry is exact or modified/broken at the smallest scales. For example, string theory generally preserves Lorentz symmetry while analog gravity and Lifshitz models break it at microscopic scales. In models with broken Lorentz symmetry, there are a vast number of constraints on departures from Lorentz invariance that can be established with low-energy experiments by employing the techniques of effective field theory in both the matter and gravitational sectors. We shall review here the low-energy effective field theory approach to Lorentz breaking in these sectors, and present various constraints provided by available observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Anisotropic scaling [3537] techniques were recently recognized to be the most appropriate way of handling higher-order operators in Lorentz breaking theories and in this case the highest-order operators are indeed crucial in making the theory power counting renormalizable. This is why we shall adopt sometimes the expression “naively non-renormalizable.”

  2. 2.

    A notable exception to this assumption is the SME and associated tests. Rotational invariance is not assumed in the program of the SME as it considers all terms at each mass dimension.

  3. 3.

    We disregard here the possible appearance of dissipative terms [74] in the dispersion relation, as this would correspond to a theory with unitarity loss and to a more radical departure from standard physics than that envisaged in the framework discussed herein (albeit a priori such dissipative scenarios are logically consistent and even plausible within some quantum/emergent gravity frameworks).

  4. 4.

    We consider here only \(\kappa = 3,4\), for which these relationships have been demonstrated.

  5. 5.

    Actually these criteria allow the addition of other (CPT even) terms, but these would not lead to modified dispersion relations (they can be thought of as extra, Planck suppressed, interaction terms) [39].

  6. 6.

    Note that for an object located at cosmological distance (let \(z\) be its redshift), the distance \(d\) becomes

    $$ d(z) = \frac{1}{H_{0}}\int^{z}_0 \frac{1+z'}{\sqrt{\Omega_{\Lambda} + \Omega_{m}(1+z')^{3}}}\,dz'\;, $$
    (23)

    where \(d(z)\) is not exactly the distance of the object as it includes a \((1+z)^{2}\) factor in the integrand to take into account the redshift acting on the photon energies.

  7. 7.

    Faraday rotation is negligible at these energies.

  8. 8.

    The same paper also claims a strong constraint on the parameter \(\xi ^{(4)}\). Unfortunately, such a claim is based on the erroneous assumption that the EFT order six operators responsible for this term imply opposite signs for opposite helicities of the photon. We have instead seen that the CPT evenness of the relevant dimension-six operators imply a helicity independent dispersion relation for the photon (see Eq. (8)).

  9. 9.

    One could of course consider any lepton/antilepton pair as produced, for example, the reaction \(e^- \rightarrow e^- \nu \overline {\nu }\). While standard particle physics arguments imply that the rate will be roughly equivalent to the \(e^-e^+\) pair production case [119] given the same order of coefficients, and the threshold will be slightly lower, the constraints are on a higher-dimensional parameter space and so less useful.

  10. 10.

    Note that the bounds presented here are weaker by a factor of \(10^{-3}\), as we have used the CMB frame as the rest frame rather than the Sun-centered frame and therefore the strengths of the bounds are weakened by the \(v/c\) of the Sun with respect to the CMB.

  11. 11.

    Note the index symmetry \({}{}{Z}{^{\beta \alpha }_{\delta \gamma }} = {}{}{Z}{^{\alpha \beta }_{\gamma \delta }}\).

  12. 12.

    Note that one could have fixed the norm to be different than \(-1\), however, one can simply scale \(u^\alpha \) to have norm \(-1\) and absorb the scaling into the coefficients.

  13. 13.

    Note however, that some knowledge of DSR phenomenology can be obtained by considering that, as in special relativity, any phenomenon that implies the existence of a preferred reference frame is forbidden. Thus, the detection of such a phenomenon would imply the falsification of both special and DSR. An example of such a process is the decay of a massless particle.

  14. 14.

    This is a somewhat harsh statement given that it was shown in [174] that a substantial (albeit reduced) high-energy gamma-ray flux is still expected also in the case of mixed composition, so that in principle the previously discussed line of reasoning based on the absence of upper threshold for UHE gamma rays might still work.

  15. 15.

    UHE nuclei suffer mainly from photodisintegration losses as they propagate in the intergalactic medium. Because photodisintegration is indeed a threshold process, it can be strongly affected by LV. According to [176], and in the same way as for the proton case, the mean free paths of UHE nuclei are modified by LV in such a way that the final UHECR spectra after propagation can show distinctive LV features. However, a quantitative evaluation of the propagated spectra has not been performed yet.

References

  1. Mavromatos NE. CPT violation and decoherence in quantum gravity. Lect Notes Phys. 2005;669:245–320.

    Google Scholar 

  2. Weinberg S. Quantum contributions to cosmological correlations. Phys Rev. 2005;D72:043514. doi:10.1103/PhysRevD.72.043514.

    Google Scholar 

  3. Damour T, Polyakov AM. The string dilaton and a least coupling principle. Nucl Phys. 1994;B423:532–58. doi:10.1016/0550-3213(94)90143-0.

    Google Scholar 

  4. Barrow JD. Zichichi QA, editor. Current topics in astrofundamental physics: primordial cosmology. 1998. pp. 269.

    Google Scholar 

  5. Bleicher M, Hofmann S, Hossenfelder S, Stoecker H. Black hole production in large extra dimensions at the Tevatron: a chance to observe a first glimpse of TeV scale gravity. Phys Lett. 2002;B548:73–6. doi:10.1016/ S0370-2693(02)02732-6.

    Google Scholar 

  6. Kostelecky VA. Gravity, Lorentz violation, and the standard model. Phys Rev. 2004;D69:105009. doi:10.1103/PhysRevD.69.105009.

    Google Scholar 

  7. Mattingly D. Modern tests of lorentz invariance. Living Rev Rel. 2005;8:5.

    Google Scholar 

  8. Dirac PAM. Is there an aether? Nature. 1951;168:906–7. doi:10.1038/168906a0.

    Google Scholar 

  9. Bjorken JD. A dynamical origin for the electromagnetic field. Ann Phys. 1963;24:174–87. doi:10.1016/0003-4916(63)90069-1.

    Google Scholar 

  10. Phillips PR. Is the Graviton a Goldstone boson? Phys Rev. 1966;146:966. doi:10.1103/PhysRev.146.966–73.

    Google Scholar 

  11. Blokhintsev DI. Basis for special relativity theory provided by experiments in high energy physics. (T). Soviet Physics Uspekhi. 1966;9:405. (1966). doi:10.1070/PU1966v009n03ABEH002890.

    Google Scholar 

  12. Pavlopoulos TG. Breakdown of Lorentz invariance. Phys Rev. 1967;159:1106–10. doi:10.1103/PhysRev.159.1106.

    Google Scholar 

  13. Rédei LB. Validity of special relativity at small distances and the velocity dependence of the muon lifetime. Phys Rev. 1967;162:1299–1300. doi:10.1103/PhysRev.162.1299.

    Google Scholar 

  14. Nielsen HB, Ninomiya M. β-Function in a non-covariant Yang-Mills theory. Nucl Phys B. 1978;141:153–77. doi:10.1016/0550-3213(78)90341-3.

    Google Scholar 

  15. Ellis J, Gaillard MK, Nanopoulos DV, Rudaz S. Uncertainties in the proton lifetime. Nucl Phys B. 1980;176:61–99. doi:10.1016/0550-3213(80)90064-4.

    Google Scholar 

  16. Zee A. Perhaps proton decay violates Lorentz invariance. Phys Rev. 1982;D25:1864. doi:10.1103/PhysRevD.25.1864.

    Google Scholar 

  17. Nielsen HB, Picek I. Redei like model and testing Lorentz invariance. Phys Lett. 1982;B114:141. doi:10.1016/0370-2693(82)90133-2.

    Google Scholar 

  18. Chadha S, Nielsen HB. Lorentz invariance as a low energy phenomenon. Nucl Phys B. 1983;217:125–44. doi:10.1016/0550-3213(83)90081-0.

    Google Scholar 

  19. Nielsen HB, Picek I. Lorentz non-invariance. Nucl Phys B. 1983;211:269–96. doi:10.1016/0550-3213(83)90409-1.

    Google Scholar 

  20. Roth M. Measurement of the UHECR energy spectrum using data from the Surface Detector of the Pierre Auger Observatory. International Cosmic Ray Conference. 2008;4:327–30.

    Google Scholar 

  21. Abbasi R, et al. First observation of the Greisen-Zatsepin-Kuzmin suppression. Phys Rev Lett. 2008;100(10):101101. doi:10.1103/PhysRevLett.100.101101.

    Google Scholar 

  22. Bluhm R. Overview of the SME: implications and phenomenology of Lorentz violation. Lect Notes Phys. 2006;702:191–226. doi:10.1007/3-540-34523-X-8.

    Google Scholar 

  23. Kostelecky VA, Samuel S. Spontaneous breaking of lorentz symmetry in string theory. Phys Rev. 1989;D39:683.

    Google Scholar 

  24. Colladay D, Kostelecky V. Lorentz violating extension of the standard model. Phys Rev. 1998;D58:116002. doi:10.1103/PhysRevD.58.116002.

    Google Scholar 

  25. Kostelecky E, Alan V. Data tables for Lorentz and CPT violation. Rev Mod Phys. 2011;83:11. (ARXIV:0801.0287).

    Google Scholar 

  26. Amelino-Camelia G, Ellis JR, Mavromatos NE, Nanopoulos DV, Sarkar S. Potential sensitivity of gamma-ray burster observations to wave dispersion in vacuo. Nature. 1998;393:763–5.

    Google Scholar 

  27. Coleman SR, Glashow SL. Cosmic ray and neutrino tests of special relativity. Phys Lett. 1997;B405:249–52. doi:10.1016/S0370- 2693(97)00638-2.

    Google Scholar 

  28. Coleman S, Glashow SL. Evading the GZK cosmic-ray cutoff. ArXiv High Energy Physics-Phenomenology, 1998. e-prints: hep-ph/9808446.

    Google Scholar 

  29. Coleman SR, Glashow SL. High-energy tests of Lorentz invariance. Phys Rev. 1999;D59:116008. doi:10.1103/PhysRevD.59.116008.

    Google Scholar 

  30. Gonzalez-Mestres L. Physical and cosmological implications of a possible class of particles able to travel faster than light. ArXiv High Energy Physics-Phenomenology e-prints: hep-ph/9610474 1996.

    Google Scholar 

  31. Gonzalez-Mestres L. In 19th Texas Symposium on Relativistic Astrophysics and Cosmology, ed. by J. Paul, T. Montmerle, E. Aubourg, 1998.

    Google Scholar 

  32. Jacobson T, Liberati S, Mattingly D. Threshold effects and Planck scale Lorentz violation: combined constraints from high energy astrophysics. Phys Rev. 2003;D67:124011. doi:10.1103/ PhysRevD.67.124011.

    Google Scholar 

  33. Mattingly D, Jacobson T, Liberati S. Threshold configurations in the presence of Lorentz violating dispersion relations. Phys Rev. 2003;D67:124012. doi:10.1103/PhysRevD.67.124012.

    Google Scholar 

  34. Jacobson T, Liberati S, Mattingly D. Lorentz violation at high energy: concepts, phenomena and astrophysical constraints. Annals Phys. 2006;321:150–96.

    Google Scholar 

  35. Anselmi D. Weighted scale invariant quantum field theories. JHEP. 2008;0802:051. doi:10.1088/1126-6708/2008/02/051.

    Google Scholar 

  36. Horava P. Quantum gravity at a Lifshitz point. Phys Rev. 2009;D79:084008. doi:10.1103/PhysRevD.79.084008.

    Google Scholar 

  37. Visser M. Power-counting renormalizability of generalized Horava gravity. ArXiv e-prints: hep-th/0912.4757 2009.

    Google Scholar 

  38. Myers RC, Pospelov M. Experimental challenges for quantum gravity. Phys Rev Lett. 2003;90:211601.

    Google Scholar 

  39. Bolokhov PA, Pospelov M. Classification of dimension 5 Lorentz violating interactions in the standard model. Phys Rev. 2008;D77:025022. doi:10.1103/PhysRevD.77.025022.

    Google Scholar 

  40. Mattingly D. Have we tested Lorentz invariance enough? PoS QG-PH. 2007;026.

    Google Scholar 

  41. Kostelecky VA, Mewes M. Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys Rev. 2009;D80:015020. doi:10.1103/PhysRevD.80.015020.

    Google Scholar 

  42. Kostelecky A, Mewes M. Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys Rev. 2012;D85:096005.

    Google Scholar 

  43. Riess AG, et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron J. 1998;116:1009–38. (1998). doi:10.1086/300499.

    Google Scholar 

  44. Perlmutter S, et al. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys J. 1999;517:565–86. doi:10.1086/307221. (The Supernova Cosmology Project).

    Google Scholar 

  45. Greisen K. End to the cosmic ray spectrum? Phys Rev Lett. 1966;16:748–50. doi:10.1103/PhysRevLett.16.748.

    Google Scholar 

  46. Zatsepin GT, Kuz’min VA. On the interaction of cosmic rays with photons. Cosmic rays, Moscow, No. 11, pp. 45–7, vol. 11, 1969.

    Google Scholar 

  47. Takeda M, Hayashida N, Honda K, Inoue N, Kadota K, et al.Extension of the cosmic ray energy spectrum beyond the predicted Greisen-Zatsepin-Kuz’min cutoff. Phys Rev Lett. 1998;81:1163–6. doi:10.1103/PhysRevLett.81.1163.

    Google Scholar 

  48. Protheroe R, Meyer H. An infrared background TeV gamma-ray crisis? Phys Lett. 2000;B493:1–6. doi:10.1016/S0370-2693(00)01113-8.

    Google Scholar 

  49. Adam T, et al. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam. 2011. http://press.web.cern.ch/press/pressreleases/Releases2011/PR19.11E.html Press Release.

  50. Amelino-Camelia G, Gubitosi G, Loret N, Mercati F, Rosati G, et al. OPERA-reassessing data on the energy dependence of the speed of neutrinos. Int J Mod Phys. 2011;D20:2623–40. doi:10.1142/S0218271811020780. (Some references added/ Figs.1 and 2 redrawn for better visibility of the effects of bias1979/ some sentences which had been written a bit too ‘densely’ in V1 are now more readable in this V2).

    Google Scholar 

  51. Cohen AG, Glashow SL. Pair creation constrains superluminal neutrino propagation. Phys Rev Lett. 2011;107:181803. doi:10.1103/ PhysRevLett.107.181803.

    Google Scholar 

  52. Maccione L, Liberati S, Mattingly DM. Violations of Lorentz invariance in the neutrino sector after OPERA. JCAP. 2013;1303:039. doi:10.1088/1475-7516/2013/03/039.

    Google Scholar 

  53. Carmona JM, Cortes JF.Constraints from Neutrino Decay on superluminal velocities. ArXiv e-prints: hep-th/1110.0430 2011.

    Google Scholar 

  54. Antonello M, et al. A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS. Phys Lett. 2012;B713:17. doi:10.1016/j.physletb.2012.05.033.

    Google Scholar 

  55. Amelino-Camelia G, Ellis JR, Mavromatos NE, Nanopoulos DV. Distance measurement and wave dispersion in a liouville- string approach to quantum gravity. Int J Mod Phys. 1997;A12:607–24.

    Google Scholar 

  56. Ellis JR, Mavromatos NE, Nanopoulos DV. A microscopic recoil model for light-cone fluctuations in quantum gravity. Phys Rev. 2000;D61:027503.

    Google Scholar 

  57. Ellis JR, Mavromatos NE, Nanopoulos DV. Dynamical formation of horizons in recoiling D-branes. Phys Rev. 2000;D62:084019.

    Google Scholar 

  58. Ellis JR, Mavromatos NE, Sakharov AS. Synchrotron radiation from the Crab Nebula discriminates between models of space-time foam. Astropart Phys. 2004;20:669–82. doi:10.1016/j.astropartphys.2003.12.001.

    Google Scholar 

  59. Gambini R, Pullin J. Nonstandard optics from quantum spacetime. Phys Rev. 1999;D59:124021.

    Google Scholar 

  60. Carroll SM, Harvey JA, Kostelecky VA, Lane CD, Okamoto T. Noncommutative field theory and Lorentz violation. Phys Rev Lett. 2001;87:141601.

    Google Scholar 

  61. Lukierski J, Ruegg H, Zakrzewski WJ. Classical quantum mechanics of free kappa relativistic systems. Ann Phys. 1995;243:90–116.

    Google Scholar 

  62. Amelino-Camelia G, Majid S. Waves on noncommutative spacetime and gamma-ray bursts. Int J Mod Phys. 2000;A15:4301–24.

    Google Scholar 

  63. Burgess CP, Cline J, Filotas E, Matias J, Moore GD. Loop-generated bounds on changes to the graviton dispersion relation. JHEP. 2002;03:043.

    Google Scholar 

  64. Gasperini M. Inflation and broken Lorentz symmetry in the very early universe. Phys Lett. 1985;B163:84. doi:10.1016/0370-2693(85)90197-2.

    Google Scholar 

  65. Gasperini M. Broken Lorentz symmetry and the dimension of space-time. Phys Lett. 1986;B180;221–4. doi:10.1016/0370-2693(86)90299-6.

    Google Scholar 

  66. Gasperini M. Singularity prevention and broken Lorentz symmetry. Class Quant Gra. 1987;4:485–94.

    Google Scholar 

  67. Gasperini M. Lorentz noninvariance and the universality of free fall in Quasiriemannian gravity. Erice School Cosmology 1987:0181.

    Google Scholar 

  68. Gasperini M. Repulsive gravity in the very early universe. Gen Rel Grav. 1998;30:1703–9. doi:10.1023/A:1026606925857.

    Google Scholar 

  69. Mattingly D, Relativistic gravity with a dynamical preferred frame. In: Kostelecký VA, editor. CPT and Lorentz symmetry., pp. 331–5. doi:10.1142/9789812778123-0042.

    Google Scholar 

  70. Eling C, Jacobson T, Mattingly D. Einstein-aether theory. ArXiv General Relativity and Quantum Cosmology e-prints: gr-qc/0410001 2004.

    Google Scholar 

  71. Jacobson T. Einstein-aether gravity: a status report. PoS. 2007;QG-PH:020.

    Google Scholar 

  72. Barcelo C, Liberati S, Visser M. Analogue gravity. Living Rev Rel. 2005;8:12.

    Google Scholar 

  73. Kostelecky V, Russell N. Data tables for Lorentz and CPT violation. Rev Mod Phys. 2011;83:11. doi:10.1103/RevModPhys.83.11.

    Google Scholar 

  74. Parentani R. Constructing QFT’s wherein Lorentz invariance is broken by dissipative effects in the UV. PoS. 2007;QG-PH:031

    Google Scholar 

  75. Collins J, Perez A, Sudarsky D, Urrutia L, Vucetich H. Lorentz invariance: an additional fine-tuning problem. Phys Rev Lett. 2004;93:191301. doi:10.1103/PhysRevLett.93.191301.

    Google Scholar 

  76. Polchinski J.Comment on [arXiv:1106.1417] ‘Small Lorentz violations in quantum gravity: do they lead to unacceptably large effects?’. Class Quant Grav. 2012;29:088001. doi:10.1088/0264-9381/29/8/088001.

    Google Scholar 

  77. Groot Nibbelink S, Pospelov M. Lorentz violation in supersymmetric field theories. Phys Rev Lett. 2005;94:081601. doi:10.1103/ PhysRevLett.94.081601.

    Google Scholar 

  78. Bolokhov PA, Nibbelink SG, Pospelov M. Lorentz violating supersymmetric quantum electrodynamics. Phys Rev. 2005;D72:015013. doi:10.1103/ PhysRevD.72.015013.

    Google Scholar 

  79. ATLAS-Collaboration. Public data release. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummary-Plots.

  80. Liberati S, Visser M, Weinfurtner S. Naturalness in emergent spacetime. Phys Rev Lett. 2006;96:151301. doi:10.1103/PhysRevLett.96.151301.

    Google Scholar 

  81. Liberati S, Visser M, Weinfurtner S. Analogue quantum gravity phenomenology from a two-component Bose-Einstein condensate. Class Quant Grav. 2006;23:3129–54. doi:10.1088/0264-9381/23/9/023.

    Google Scholar 

  82. Pospelov M, Shang Y. On Lorentz violation in Horava-Lifshitz type theories. Phys Rev. 2012;D85:105001. doi:10.1103/PhysRevD.85.105001.

    Google Scholar 

  83. Stecker F, Glashow SL. New tests of Lorentz invariance following from observations of the highest energy cosmic gamma-rays. Astropart Phys. 2001;16:97–9. doi:10.1016/S0927-6505(01)00137-2.

    Google Scholar 

  84. Baccetti V, Tate K, Visser M. Lorentz violating kinematics: threshold theorems. JHEP. 2012;1203:087. doi:10.1007/JHEP 03(2012)087.

    Google Scholar 

  85. Kluzniak W. Transparency of the universe to TeV photons in some models of quantum gravity. Astropart Phys. 1999;11:117–8. doi:10.1016/S0927-6505(99)00070-5.

    Google Scholar 

  86. Abraham J, et al. Correlation of the highest energy cosmic rays with nearby extragalactic objects. Science. 2007;318:938–43. (2007). doi:10.1126/science.1151124.

    Google Scholar 

  87. Galaverni M, Sigl G. Lorentz violation in the photon sector and ultra-high energy cosmic rays. Phys Rev Lett. 2008;100:021102. doi:10.1103/ PhysRevLett.100.021102.

    Google Scholar 

  88. Maccione L, Liberati S.GZK photon constraints on Planck scale Lorentz violation in QED. JCAP. 2008;0808:027. doi:10.1088/1475-7516/2008/08/027.

    Google Scholar 

  89. Gelmini G, Kalashev OE, Semikoz DV. GZK photons as ultra high energy cosmic rays. J Exp Theor Phys. 2008;106:1061–82. doi:10.1134/ S106377610806006X.

    Google Scholar 

  90. Abraham J, et al. Upper limit on the cosmic-ray photon flux above 10**19 eV using the surface detector of the Pierre Auger observatory. Astropart Phys. 2008;29:243–56. doi:10.1016/j.astropartphys.2008.01.003.

    Google Scholar 

  91. Rubtsov GI, et al.Upper limit on the ultra-high-energy photon flux from AGASA and Yakutsk data. Phys Rev. 2006;D73:063009. doi:10.1103/PhysRevD.73.063009.

    Google Scholar 

  92. Galaverni M, Sigl G. Lorentz violation and ultrahigh-energy photons. Phys Rev. 2008;D78:063003. doi:10.1103/PhysRevD.78.063003.

    Google Scholar 

  93. Liberati S, Maccione L. Lorentz Violation: Motivation and new constraints. Ann Rev Nucl Part Sci. 2009;59:245–67. doi:10.1146/ annurev.nucl.010909.083640.

    Google Scholar 

  94. Jacobson TA, Liberati S, Mattingly D, Stecker FW. New limits on Planck scale Lorentz violation in QED. Phys Rev Lett. 2004;93:021101.

    Google Scholar 

  95. Ellis JR, Mavromatos NE, Nanopoulos DV, Sakharov AS, Sarkisyan EKG. Robust limits on Lorentz violation from gamma-ray Bursts. Astropart Phys. 2006;25:402–11.

    Google Scholar 

  96. Albert J, et al. Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 Observed by the MAGIC telescope. Phys Lett. 2008;B668:253–7. doi:10.1016/j.physletb.2008.08.053.

    Google Scholar 

  97. Ackermann M, et al.A limit on the variation of the speed of light arising from quantum gravity effects. Nature. 2009;462:331–4. doi:10.1038/nature08574.

    Google Scholar 

  98. Maccione L, Liberati S, Celotti A, Kirk JG, Ubertini P. Gamma-ray polarization constraints on Planck scale violations of special relativity. 2008.

    Google Scholar 

  99. Gleiser RJ, Kozameh CN. Astrophysical limits on quantum gravity motivated birefringence. Phys Rev. 2001;D64:083007.

    Google Scholar 

  100. McMaster WH. Matrix representation of polarization. Rev Mod Phys. 1961;33(1):8. doi 10.1103/RevModPhys.33.8.

    Google Scholar 

  101. Parmar AN, Winkler C, Barr P, Hansson L, Kuulkers E, Much R, Orr A. INTEGRAL mission. In: X-ray and gamma-ray telescopes and instruments for astronomy. Edited by Joachim E. Truemper, Harvey D. Tananbaum. Proceedings of the SPIE, Volume 4851, pp 1104–12; 2003.

    Google Scholar 

  102. Dean AJ, Clark DJ, Stephen JB, McBride VA, Bassani L, Bazzano A, Bird AJ, Hill AB, Shaw SE, Ubertini P. Science. Polarized gamma-ray emission from the crab. 2008;321:1183. doi:10.1126/science.1149056.

    Google Scholar 

  103. McGlynn S, et al. Polarisation studies of the prompt gamma-ray emission from GRB 041219a using the spectrometer aboard INTEGRAL. Astron Astrophys 2007;466:895–904. doi:10.1051/0004-6361:20066179.

    Google Scholar 

  104. Petri J, Kirk JG. Polarization of high-energy pulsar radiation in the striped wind model. Astrophys J. 2005;627:L37–40.

    Google Scholar 

  105. Weisskopf MC, Silver EH, Kestenbaum HL, Long KS, Novick R. A precision measurement of the X-ray polarization of the Crab Nebula without pulsar contamination. ApJL. 1978;220:L117–21. doi:10.1086/182648.

    Google Scholar 

  106. Fan YZ, Wei DM, Xu D. Gamma-ray burst UV/optical afterglow polarimetry as a probe of quantum gravity. Mon Not Roy Astron Soc. 2006;376:1857–60.

    Google Scholar 

  107. Ng CY, Romani RW. Fitting pulsar wind tori. Astrophys J. 2004;601:479–84.

    Google Scholar 

  108. Kanbach G, Slowikowska A, Kellner S, Steinle H. New optical polarization measurements of the Crab pulsar. AIP Conf Proc. 2005;801:306–11.

    Google Scholar 

  109. Mitrofanov IG. Astrophysics (communication arising): a constraint on canonical quantum gravity? Nature. 2003;426:139.

    Google Scholar 

  110. Coburn W, Boggs SE. Polarization of the prompt γ-ray emission from the γ-ray burst of 6 December 2002. Nature. 2003;423:415–7.

    Google Scholar 

  111. Stecker FW. A new Limit on Planck Scale Lorentz Violation from Gamma-ray Burst Polarization. Astropart Phys. 2011;35:95. doi:10.1016/j.astropartphys.2011.06.007.

    Google Scholar 

  112. Laurent P, Gotz D, Binetruy P, Covino S, Fernandez-Soto A. Constraints on Lorentz invariance violation using INTEGRAL/IBIS observations of GRB041219A. 2011.

    Google Scholar 

  113. Altschul B. Lorentz violation and synchrotron radiation. Phys Rev. 2005;D72:085003. doi:10.1103/PhysRevD.72.085003.

    Google Scholar 

  114. Jacobson T, Liberati S, Mattingly D. Lorentz violation and Crab synchrotron emission: a new constraint far beyond the Planck scale. Nature. 2003;424:1019–21.

    Google Scholar 

  115. Maccione L, Liberati S, Celotti A, Kirk J. New constraints on Planck-scale Lorentz violation in QED from the Crab Nebula. J Cosmol Astropart Phys. 2007;2007(10):013.

    Google Scholar 

  116. Kirk JG, Lyubarsky Y, Petri J. The Theory of Pulsar Winds and Nebulae. In: Becker W, editor. Astrophysics and Space Science Library. vol. 357 of Astrophysics and Space Science Library; 2009. p. 421.

    Google Scholar 

  117. Aharonian F, et al. The Crab nebula and pulsar between 500-GeV and 80-TeV: observations with the HEGRA stereoscopic air Cherenkov telescopes. Astrophys J. 2004;614:897–913.

    Google Scholar 

  118. Gelmini G, Nussinov S, Yaguna CE. On photon splitting in theories with Lorentz invariance violation. JCAP. 2005;0506:012. doi:10.1088/1475-7516/2005/06/012.

    Google Scholar 

  119. Ward B. Estimates of radiation by Superluminal neutrinos. Phys Rev. 2012;D85:073007.

    Google Scholar 

  120. Yao WM, et al. Review of particle physics. J Phys. 2006;G33:1–1232. doi:10.1088/0954-3899/33/1/001.

    Google Scholar 

  121. Heckel BR, Adelberger E, Cramer C, Cook T, Schlamminger S, et al. Preferred-frame and CP-violation tests with polarized electrons. Phys Rev. 2008;D78:092006. doi:10.1103/PhysRevD.78.092006.

    Google Scholar 

  122. Kostelecky AV, Tasson JD. Matter-gravity couplings and Lorentz violation. Phys Rev. 2011;D83:016013. doi:10.1103/PhysRevD.83.016013.

    Google Scholar 

  123. Altschul B. Bounds on spin-dependent Lorentz violation from inverse Compton observations. Phys Rev. 2007;D75:041301. doi:10.1103/PhysRevD.75.041301.

    Google Scholar 

  124. Klinkhamer F, Schreck M. New two-sided bound on the isotropic Lorentz-violating parameter of modified-Maxwell theory. Phys Rev. 2008;D78:085026. doi:10.1103/ PhysRevD.78.085026.

    Google Scholar 

  125. Arkani-Hamed N, Cheng HC, Luty MA, Mukohyama S. Ghost condensation and a consistent infrared modification of gravity. JHEP. 2004;05:074.

    Google Scholar 

  126. Jacobson T, Mattingly D. Gravity with a dynamical preferred frame. Phys Rev. 2001;D64:024028. doi:10.1103/ PhysRevD.64.024028.

    Google Scholar 

  127. Bluhm R, Gagne NL, Potting R, Vrublevskis A. Constraints and stability in vector theories with spontaneous Lorentz violation. Phys Rev. 2008;D77:125007. doi:10.1103/PhysRevD.77.125007, 10.1103/PhysRevD.79.029902.

    Google Scholar 

  128. Kostelecky VA, Tasson J. Prospects for large relativity violations in matter-gravity couplings. Phys Rev Lett. 2009;102:010402. doi:10.1103/ Phys Rev Lett.102:010402.

    Google Scholar 

  129. Foster BZ, Jacobson T. Post-Newtonian parameters and constraints on Einstein-aether theory. Phys Rev. 2006;D73:064015. doi:10.1103/PhysRevD.73.064015.

    Google Scholar 

  130. Will CM. The confrontation between general relativity and experiment. Living Rev Rel. 2005;9:3.

    Google Scholar 

  131. Jacobson T, Mattingly D. Einstein-aether waves. Phys Rev. 2004;D70:024003. doi:10.1103/PhysRevD.70.024003.

    Google Scholar 

  132. Chatziioannou K, Yunes N, Cornish N. Model-independent test of general relativity: an extended post-Einsteinian framework with complete polarization content. Phys Rev. 2012;D86:022004. doi:10.1103/ PhysRevD.86.022004.

    Google Scholar 

  133. Elliott JW, Moore GD, Stoica H. Constraining the new aether: gravitational Cherenkov radiation. JHEP. 2005;08:066.

    Google Scholar 

  134. Hohensee MA, Chu S, Peters A, Muller H. Equivalence principle and gravitational redshift. Phys Rev Lett. 2011;106:151102. doi 10.1103/ PhysRevLett.106.151102.

    Google Scholar 

  135. Carroll SM, Lim EA. Lorentz-violating vector fields slow the universe down. Phys Rev. 2004;D70:123525. doi:10.1103/ PhysRevD.70.123525.

    Google Scholar 

  136. Muller H, Peters A, Chu S. A precision measurement of the gravitational redshift by the interference of matter waves. Nature. 2010;463:926–29. doi:10.1038/nature08776.

    Google Scholar 

  137. Aguilar-Arevalo AA, et al. Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses. Phys Lett. 2013;B718:1303. doi:10.1016/ j.physletb.2012.12.020.

    Google Scholar 

  138. Kelley J. Searching for quantum gravity with high energy atmospheric neutrinos and AMANDA-II. Nucl Phys. 2009;A827:507C–9C. doi:10.1016/j.nuclphysa.2009.05.110.

    Google Scholar 

  139. Gonzalez-Garcia M, Maltoni M. Atmospheric neutrino oscillations and new physics. Phys Rev. 2004;D70:033010. doi:10.1103/PhysRevD.70.033010.

    Google Scholar 

  140. Huelsnitz W, Kelley J. Search for quantum gravity with IceCube and high energy atmospheric neutrinos. Proceedings of the 31st ICRC, LODZ 2009.

    Google Scholar 

  141. Abbasi R, et al. Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube. Phys Rev. 2010;D82:112003. doi:10.1103/PhysRevD.82.112003.

    Google Scholar 

  142. Diaz JS, Kostelecky A. Phys Rev. 2012;D85:016013.

    Google Scholar 

  143. Stodolsky L. Lorentz- and CPT-violating models for neutrino oscillations. Phys Lett. 1988;B201:353. doi:10.1016/0370-2693(88)91154-9.

    Google Scholar 

  144. Longo MJ. New precision tests of the Einstein equivalence principle from SN1987A. Phys Rev Lett. 1988;60:173. doi:10.1103/PhysRevLett.60.173.

    Google Scholar 

  145. Ellis JR, Harries N, Meregaglia A, Rubbia A, Sakharov A. Probes of Lorentz violation in neutrino propagation. Phys Rev. 2008;D78:033013. doi:10.1103/PhysRevD.78.033013.

    Google Scholar 

  146. Sakharov A, Ellis J, Harries N, Meregaglia A, Rubbia A. Exploration of possible quantum gravity effects with neutrinos II: Lorentz violation in neutrino propagation. J Phys Conf Ser. 2009;171:012039. doi 10.1088/1742-6596/171/1/012039

    Google Scholar 

  147. Adamson P, et al. Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam. Phys Rev. 2007;D76:072005. doi:10.1103/PhysRevD.76.072005.

    Google Scholar 

  148. Antonello M, et al. A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS. Phys Lett. 2012;B711:270–5.

    Google Scholar 

  149. Mattingly DM, Maccione L, Galaverni M, Liberati S, Sigl G. Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation. JCAP. 2010;1002:007. doi:10.1088/1475-7516/2010/02/007.

    Google Scholar 

  150. Barwick SW. ARIANNA: a new concept for UHE neutrino detection. J Phys Conf Ser. 2007;60:276–83. doi:10.1088/1742-6596/60/1/060.

    Google Scholar 

  151. Shomer A. A pedagogical explanation for the non-renormalizability of gravity. ArXiv e-prints: hep-th/0709.3555 2007.

    Google Scholar 

  152. Ellis JR, Mavromatos NE, Nanopoulos DV. String theory modifies quantum mechanics. Phys Lett. 1992;B293:37–48. doi:10.1016/0370-2693(92)91478-R.

    Google Scholar 

  153. Polchinski J. TASI lectures on D-branes. ArXiv High Energy Physics—Theory e-prints: hep-th/9611050 1996.

    Google Scholar 

  154. Ellis JR, Mavromatos NE, Nanopoulos DV, Sakharov AS. Space-time foam may violate the principle of equivalence. Int J Mod Phys. 2004;A19:4413–30. doi:10.1142/S0217751X04019780.

    Google Scholar 

  155. von Ignatowsky W. Einige allgemeine Bemerkungen zum Relativitätsprinzip. Verh Deutsch Phys Ges. 1910;12:788–96.

    Google Scholar 

  156. von Ignatowsky W. Einige allgemeine Bemerkungen zum Relativitätsprinzip. Phys Zeitsch. 1910;11:972–6.

    Google Scholar 

  157. von Ignatowsky W. Das Relativitätsprinzip. Arch Math Phys. 1911;3(17):1–24.

    Google Scholar 

  158. von Ignatowsky W. Das Relativitätsprinzip., Arch Math Phys. 1911;3(18):17–41.

    Google Scholar 

  159. von Ignatowsky W. Eine Bemerkung zu meiner Arbeit ‘Einige allgemeine Bemerkungen zum Relativitätsprinzip’. Phys Zeitsch. 1911;12:779.

    Google Scholar 

  160. Liberati S, Sonego S, Visser M. Faster-than-c signals, special relativity, and causality. Annals Phys. 2002;298:167–85. doi:10.1006/aphy.2002.6233.

    Google Scholar 

  161. Sonego S, Pin M. Foundations of anisotropic relativistic mechanics. J Math Phys. 2009;50:042902. doi:10.1063/1.3104065.

    Google Scholar 

  162. Baccetti V, Tate K, Visser M. Inertial frames without the relativity principle: breaking Lorentz symmetry. ArXiv e-prints: gr-qc/1302.5989 2013.

    Google Scholar 

  163. Cohen AG, Glashow SL. Very special relativity. Phys Rev Lett. 2006;97:021601. doi:10.1103/ PhysRevLett.97.021601.

    Google Scholar 

  164. Bogoslovsky G. Subgroups of the group of generalized Lorentz transformations and their geometric invariants. SIGMA. 2005;1:017. doi:10.3842/SIGMA.2005.017.

    Google Scholar 

  165. Bogoslovsky GY. Lorentz symmetry violation without violation of relativistic symmetry. Phys Lett. 2006;A350:5–10. doi:10.1016/j.physleta.2005.11.007.

    Google Scholar 

  166. Gibbons GW, Gomis J, Pope CN. General very special relativity is Finsler geometry. Phys Rev D. 2007;76(8):081701. doi:10.1103/PhysRevD.76.081701. http://link.aps.org/abstract/PRD/v76/e081701.

  167. Amelino-Camelia G, Freidel L, Kowalski-Glikman J, Smolin L. The principle of relative locality. Phys Rev. 2011;D84:084010. doi:10.1103/PhysRevD.84.084010.

    Google Scholar 

  168. Smolin L. Could deformed special relativity naturally arise from the semiclassical limit of quantum gravity? ArXiv e-prints: hep-th/0808.3765 2008.

    Google Scholar 

  169. Rovelli C. A note on DSR. ArXiv e-prints: gr-qc/0808.3505 2008.

    Google Scholar 

  170. Amelino-Camelia G, Freidel L, Kowalski-Glikman J, Smolin L. Relative locality and the soccer ball problem. Phys Rev. 2011;D84:087702. doi:10.1103/PhysRevD.84.087702.

    Google Scholar 

  171. Hossenfelder S. Comment on arXiv:1104.2019, ‘Relative locality and the soccer ball problem,’ by Amelino-Camelia et al. Phys Rev. 2013;D88:028701. doi:10.1103/PhysRevD.88.028701.

    Google Scholar 

  172. Abraham J, et al. Measurement of the depth of maximum of extensive air showers above 1018 eV. Phys Rev Lett. 2010;104:091101. doi:10.1103/PhysRevLett.104.091101.

    Google Scholar 

  173. Glushkov A, Makarov I, Pravdin M, Sleptsov I, Gorbunov D, et al. Muon content of ultrahigh-energy air showers: Yakutsk data versus simulations. JETP Lett. 2008;87:190–4. doi:10.1134/S0021364008040024. (The Yakutsk EAS Array).

    Google Scholar 

  174. Hooper D, Taylor AM, Sarkar S. Cosmogenic photons as a test of ultra-high energy cosmic ray composition. Astropart Phys. 2011;34:340–3. doi:10.1016/ j.astropartphys.2010.09.002.

    Google Scholar 

  175. Abraham J, et al.Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory. Phys Lett. 2010;B685:239–46. doi 10.1016/j.physletb.2010.02.013.

    Google Scholar 

  176. Saveliev A, Maccione L, Sigl G. Lorentz invariance violation and chemical composition of ultra high energy cosmic rays. JCAP. 2011;1103:046. doi:10.1088/1475-7516/2011/03/046.

    Google Scholar 

  177. Nicolis A, Rattazzi R, Trincherini E. The Galileon as a local modification of gravity. Phys Rev. 2009;D79:064036. doi:10.1103/PhysRevD.79.064036.

    Google Scholar 

Download references

Acknowledgements

We wish to thank Luca Maccione for useful insights, discussions, and feedback on the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Liberati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liberati, S., Mattingly, D. (2016). Lorentz Breaking Effective Field Theory Models for Matter and Gravity: Theory and Observational Constraints. In: Peron, R., Colpi, M., Gorini, V., Moschella, U. (eds) Gravity: Where Do We Stand?. Springer, Cham. https://doi.org/10.1007/978-3-319-20224-2_11

Download citation

Publish with us

Policies and ethics