Skip to main content

Molecular Profiling: Catecholamine Modulation of Gene Expression in Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium

  • Chapter
Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health

Part of the book series: Advances in Experimental Medicine and Biology ((MICENDO,volume 874))

Abstract

Investigations of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium have demonstrated that these bacterial pathogens can respond to the presence of catecholamines including norepinephrine and/or epinephrine in their environment by modulating gene expression and exhibiting various phenotypes. For example, one of the most intensively investigated phenotypes following exposure of E. coli and S. Typhimurium to norepinephrine is enhanced bacterial growth in a serum-based medium. Host-pathogen investigations have demonstrated that the mammalian host utilizes nutritional immunity to sequester iron and prevent extraintestinal growth by bacterial pathogens. However, Salmonella and certain E. coli strains have a genetic arsenal designed for subversion and subterfuge of the host. Norepinephrine enhances bacterial growth due, in part, to increased iron availability, and transcriptional profiling indicates differential expression of genes encoding iron acquisition and transport proteins. Bacterial motility of E. coli and S. Typhimurium is also enhanced in the presence of catecholamines and increased flagellar gene expression has been described. Furthermore, epinephrine and norepinephrine are chemoattractants for E. coli O157:H7. In S. Typhimurium, norepinephrine enhances horizontal gene transfer and increases expression of genes involved in plasmid transfer. Exposure of E. coli O157:H7 to norepinephrine increases expression of the genes encoding Shiga toxin and operons within the locus of enterocyte effacement (LEE). Alterations in the transcriptional response of enteric bacteria to catecholamine exposure in vivo are predicted to enhance bacterial colonization and pathogen virulence. This chapter will review the current literature on the transcriptional response of E. coli and S. Typhimurium to catecholamines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bansal T, Englert D, Lee J, Hegde M, Wood TK, Jayaraman A (2007) Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect Immun 75(9):4597–4607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bearson BL, Bearson SM (2008) The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium. Microb Pathog 44(4):271–278

    Article  CAS  PubMed  Google Scholar 

  • Bearson BL, Bearson SM, Uthe JJ, Dowd SE, Houghton JO, Lee I, Toscano MJ, Lay DC Jr (2008) Iron regulated genes of Salmonella enterica serovar Typhimurium in response to norepinephrine and the requirement of fepDGC for norepinephrine-enhanced growth. Microbes Infect 10(7):807–816

    Article  CAS  PubMed  Google Scholar 

  • Bearson BL, Bearson SM, Lee IS, Brunelle BW (2010) The Salmonella enterica serovar Typhimurium QseB response regulator negatively regulates bacterial motility and swine colonization in the absence of the QseC sensor kinase. Microb Pathog 48(6):214–219. doi:10.1016/j.micpath.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  • Brodsky IE, Ernst RK, Miller SI, Falkow S (2002) mig-14 is a Salmonella gene that plays a role in bacterial resistance to antimicrobial peptides. J Bacteriol 184(12):3203–3213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burton CL, Chhabra SR, Swift S, Baldwin TJ, Withers H, Hill SJ, Williams P (2002) The growth response of Escherichia coli to neurotransmitters and related catecholamine drugs requires a functional enterobactin biosynthesis and uptake system. Infect Immun 70(11):5913–5923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chilcott GS, Hughes KT (2000) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64(4):694–708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V (2006) The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A 103(27):10420–10425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Detweiler CS, Monack DM, Brodsky IE, Mathew H, Falkow S (2003) virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance. Mol Microbiol 48(2):385–400. doi:10.1046/j.1365-2958.2003.03455.x

    Article  CAS  PubMed  Google Scholar 

  • Dowd SE (2007) Escherichia coli O157:H7 gene expression in the presence of catecholamine norepinephrine. FEMS Microbiol Lett 273(2):214–223. doi:10.1111/j.1574-6968.2007.00800.x

    Article  CAS  PubMed  Google Scholar 

  • Figueira R, Holden DW (2012) Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology 158(Pt 5):1147–1161. doi:10.1099/mic.0.058115-0

    Article  CAS  PubMed  Google Scholar 

  • Fischbach MA, Lin H, Liu DR, Walsh CT (2005) In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc Natl Acad Sci U S A 102(3):571–576. doi:10.1073/pnas.0408463102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ, Liu DR, Raymond KN, Wanner BL, Strong RK, Walsh CT, Aderem A, Smith KD (2006) The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci U S A 103(44):16502–16507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freestone PP, Haigh RD, Williams PH, Lyte M (1999) Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol Lett 172(1):53–60

    Article  CAS  PubMed  Google Scholar 

  • Freestone PP, Lyte M, Neal CP, Maggs AF, Haigh RD, Williams PH (2000) The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J Bacteriol 182(21):6091–6098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freestone PP, Haigh RD, Williams PH, Lyte M (2003) Involvement of enterobactin in norepinephrine-mediated iron supply from transferrin to enterohaemorrhagic Escherichia coli. FEMS Microbiol Lett 222(1):39–43. doi:S037810970300243X

    Google Scholar 

  • Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10(5):1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Guckes KR, Kostakioti M, Breland EJ, Gu AP, Shaffer CL, Martinez CR 3rd, Hultgren SJ, Hadjifrangiskou M (2013) Strong cross-system interactions drive the activation of the QseB response regulator in the absence of its cognate sensor. Proc Natl Acad Sci U S A 110(41):16592–16597. doi:10.1073/pnas.1315320110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gunn JS (2008) The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol 16(6):284–290. doi:10.1016/j.tim.2008.03.007

    Article  CAS  PubMed  Google Scholar 

  • Hadjifrangiskou M, Kostakioti M, Chen SL, Henderson JP, Greene SE, Hultgren SJ (2011) A central metabolic circuit controlled by QseC in pathogenic Escherichia coli. Mol Microbiol 80(6):1516–1529. doi:10.1111/j.1365-2958.2011.07660.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hantke K, Nicholson G, Rabsch W, Winkelmann G (2003) Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci U S A 100(7):3677–3682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hood MI, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10(8):525–537. doi:10.1038/nrmicro2836

    Article  CAS  PubMed  Google Scholar 

  • Hughes DT, Clarke MB, Yamamoto K, Rasko DA, Sperandio V (2009) The QseC adrenergic signaling cascade in Enterohemorrhagic E. coli (EHEC). PLoS Pathog 5(8), e1000553. doi:10.1371/journal.ppat.1000553

    Article  PubMed Central  PubMed  Google Scholar 

  • Karavolos MH, Spencer H, Bulmer DM, Thompson A, Winzer K, Williams P, Hinton JC, Khan CM (2008) Adrenaline modulates the global transcriptional profile of Salmonella revealing a role in the antimicrobial peptide and oxidative stress resistance responses. BMC Genomics 9:458. doi:10.1186/1471-2164-9-458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karavolos MH, Winzer K, Williams P, Khan CM (2013) Pathogen espionage: multiple bacterial adrenergic sensors eavesdrop on host communication systems. Mol Microbiol 87(3):455–465. doi:10.1111/mmi.12110

    Article  CAS  PubMed  Google Scholar 

  • Kostakioti M, Hadjifrangiskou M, Pinkner JS, Hultgren SJ (2009) QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Mol Microbiol 73(6):1020–1031. doi:10.1111/j.1365-2958.2009.06826.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo M, Lin H, Fischbach MA, Liu DR, Walsh CT, Groves JT (2006) Enzymatic tailoring of enterobactin alters membrane partitioning and iron acquisition. ACS Chem Biol 1(1):29–32. doi:10.1021/cb0500034

    Article  CAS  PubMed  Google Scholar 

  • Merighi M, Septer AN, Carroll-Portillo A, Bhatiya A, Porwollik S, McClelland M, Gunn JS (2009) Genome-wide analysis of the PreA/PreB (QseB/QseC) regulon of Salmonella enterica serovar Typhimurium. BMC Microbiol 9:42. doi:10.1186/1471-2180-9-42

    Article  PubMed Central  PubMed  Google Scholar 

  • Moreira CG, Sperandio V (2012) Interplay between the QseC and QseE bacterial adrenergic sensor kinases in Salmonella enterica serovar Typhimurium pathogenesis. Infect Immun 80(12):4344–4353. doi:10.1128/IAI.00803-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moreira CG, Weinshenker D, Sperandio V (2010) QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo. Infect Immun 78(3):914–926. doi:10.1128/IAI.01038-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Njoroge J, Sperandio V (2012) Enterohemorrhagic Escherichia coli virulence regulation by two bacterial adrenergic kinases, QseC and QseE. Infect Immun 80(2):688–703. doi:10.1128/IAI.05921-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peterson G, Kumar A, Gart E, Narayanan S (2011) Catecholamines increase conjugative gene transfer between enteric bacteria. Microb Pathog 51(1–2):1–8. doi:10.1016/j.micpath.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  • Pullinger GD, Carnell SC, Sharaff FF, van Diemen PM, Dziva F, Morgan E, Lyte M, Freestone PP, Stevens MP (2010a) Norepinephrine augments Salmonella enterica-induced enteritis in a manner associated with increased net replication but independent of the putative adrenergic sensor kinases QseC and QseE. Infect Immun 78(1):372–380. doi:10.1128/IAI.01203-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pullinger GD, van Diemen PM, Carnell SC, Davies H, Lyte M, Stevens MP (2010b) 6-Hydroxydopamine-mediated release of norepinephrine increases faecal excretion of Salmonella enterica serovar Typhimurium in pigs. Vet Res 41(5):68. doi:10.1051/vetres/2010040

    Article  PubMed Central  PubMed  Google Scholar 

  • Rasko DA, Moreira CG, de Li R, Reading NC, Ritchie JM, Waldor MK, Williams N, Taussig R, Wei S, Roth M, Hughes DT, Huntley JF, Fina MW, Falck JR, Sperandio V (2008) Targeting QseC signaling and virulence for antibiotic development. Science 321(5892):1078–1080. doi:10.1126/science.1160354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma VK, Casey TA (2014a) Determining the relative contribution and hierarchy of hha and qseBC in the regulation of flagellar motility of Escherichia coli O157:H7. PLoS One 9(1), e85866. doi:10.1371/journal.pone.0085866

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharma VK, Casey TA (2014b) Escherichia coli O157:H7 lacking the qseBC-encoded quorum-sensing system outcompetes the parental strain in colonization of cattle intestines. Appl Environ Microbiol 80(6):1882–1892. doi:10.1128/AEM.03198-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith KD (2007) Iron metabolism at the host pathogen interface: Lipocalin 2 and the pathogen-associated iroA gene cluster. Int J Biochem Cell Biol 39(10):1776–1780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spencer H, Karavolos MH, Bulmer DM, Aldridge P, Chhabra SR, Winzer K, Williams P, Khan CM (2010) Genome-wide transposon mutagenesis identifies a role for host neuroendocrine stress hormones in regulating the expression of virulence genes in Salmonella. J Bacteriol 192(3):714–724. doi:10.1128/JB.01329-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB (2003) Bacteria-host communication: the language of hormones. Proc Natl Acad Sci U S A 100(15):8951–8956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Touati D, Jacques M, Tardat B, Bouchard L, Despied S (1995) Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase. J Bacteriol 177(9):2305–2314

    PubMed Central  CAS  PubMed  Google Scholar 

  • Verbrugghe E, Boyen F, Van Parys A, Van Deun K, Croubels S, Thompson A, Shearer N, Leyman B, Haesebrouck F, Pasmans F (2011) Stress induced Salmonella Typhimurium recrudescence in pigs coincides with cortisol induced increased intracellular proliferation in macrophages. Vet Res 42:118. doi:10.1186/1297-9716-42-118

    Article  PubMed Central  PubMed  Google Scholar 

  • Williams LP Jr, Newell KW (1970) Salmonella excretion in joy-riding pigs. Am J Public Health Nations Health 60(5):926–929

    Article  PubMed Central  PubMed  Google Scholar 

  • Williams PH, Rabsch W, Methner U, Voigt W, Tschape H, Reissbrodt R (2006) Catecholate receptor proteins in Salmonella enterica: role in virulence and implications for vaccine development. Vaccine 24(18):3840–3844

    Article  CAS  PubMed  Google Scholar 

  • Wosten MM, Kox LF, Chamnongpol S, Soncini FC, Groisman EA (2000) A signal transduction system that responds to extracellular iron. Cell 103(1):113–125. doi:S0092-8674(00)00092-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley L. Bearson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Bearson, B.L. (2016). Molecular Profiling: Catecholamine Modulation of Gene Expression in Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium. In: Lyte, M. (eds) Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. Advances in Experimental Medicine and Biology(), vol 874. Springer, Cham. https://doi.org/10.1007/978-3-319-20215-0_7

Download citation

Publish with us

Policies and ethics