Advertisement

Hydrothermal Pretreatments of Macroalgal Biomass for Biorefineries

  • Héctor A. RuizEmail author
  • Rosa M. Rodríguez-Jasso
  • Mario Aguedo
  • Zsófia Kádár

Abstract

Recently, macroalgal biomass is gaining wide attention as an alternative in the production of biofuels (as bioetanol and biogas) and compounds with high added value with specific properties (antioxidants, anticoagulants, anti-inflammatories) for applications in food, medical and energy industries in accordance with the integrated biorefineries. Furthermore, biorefinery concept requires processes that allow efficient utilization of all components of the biomass. The pretreatment step in a biorefinery is often based on hydrothermal principles of high temperatures in aqueous solution. Therefore, in this chapter, a review on the application of hydrothermal pretreatment on macroalgal biomass is presented.

Keywords

Biorefinery Biomass valorization Hydrothermal pretreatment Macroalgae Biofuels High value-added products Antioxidants Bioethanol Severity factor Brown macroalgae Reactors Fucoidan Hydrothermal liquefaction Methane Bio-oil 

References

  1. Aguilar MJ, Batista AP, Nunes MC, Cordobés F, Raymundo A, Guerrero A (2011) From egg yolk/κ-Carrageenan dispersions to gel systems: linear viscoelasticity and texture analysis. Food Hydrocolloid 25:654–658CrossRefGoogle Scholar
  2. Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sustain Energ Rev 15:1615–1624CrossRefGoogle Scholar
  3. Alvira P, Tomás-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861PubMedCrossRefGoogle Scholar
  4. Anastasakis K, Ross AB (2015) Hydrothermal liquefaction of four brown macro-algae commonly found on the UK coasts: an energetic analysis of the process and comparison with bio-chemical conversion methods. Fuel 139:546–553CrossRefGoogle Scholar
  5. Anastyuk SD, Imbs IT, Dmitrnok PS, Zvyagintseva TN (2014) Rapid mass spectrometric analysis of a novel fucoidan, extracted from the brown alga Coccophora langsdorfii. Sci World J. doi: 10.1155/2014/972450 Google Scholar
  6. Andrade PB, Barbosa M, Matos RP, Lopes G, Vinholes J, Mouga T, Valentão P (2013) Valuable compounds in macroalgae extracts. Food Chem 138:1819–1828PubMedCrossRefGoogle Scholar
  7. Astorga-España MS, Mansilla A (2013) Sub-Antarctic macroalgae: opportunities for gastronomic tourism and local fisheries in the Region of Magallanes and Chilean Antarctic Territory. J Appl Phycol 26:973–978CrossRefGoogle Scholar
  8. Azapagic A (2014) Sustainability considerations for integrated biorefineries. Trends Biotechnol 32:1–4PubMedCrossRefGoogle Scholar
  9. Baghel RS, Trivedi N, Gupta V, Neori A, Reddy CRK, Lali A, Jha B (2015) Biorefining of marine macroalgal biomass for production of biofuel and commodity chemicals. Green Chem. doi: 10.1039/C4GC02532F (In press)Google Scholar
  10. Balboa EM, Rivas S, Moure A, Domínguez H, Parajó JC (2013) Simultaneous extraction and depolymerization of fucoidan from Sargassum muticum in aqueous media. Mar Drugs 11:4612–4627PubMedCentralPubMedCrossRefGoogle Scholar
  11. Balboa EM, Soto ML, Nogueira DR, González-López N, Conde E, Moure A, Vinardell MP, Mitjans M, Domínguez H (2014) Potential of antioxidant extracts produced by aqueous processing of renewable resources for the formulation of cosmetics. Ind Crops Prod 58:104–110CrossRefGoogle Scholar
  12. Barabanova AO, Tishchenko IP, Glazunov VP, Soloveva TF, Ermak IM (2010) Characteristics of polysaccharides and protein associated with them from dried and freshly collected red alga Tichocarpus crinitus. Chem Nat Compd 46:509–513CrossRefGoogle Scholar
  13. Barbot YN, Falk HM, Benz R (2014) Thermo-acidic pretreatment of marine brown algae Fucus vesiculosus to increase methane production—a disposal principle for macroalgae waste from beaches. J Appl Phycol. doi: 10.1007/s10811-014-0339-x (In press)Google Scholar
  14. Bedoux G, Hardouin K, Burlot AS, Nathalie Buorgougnon (2014) Bioactive components from seaweeds: cosmetics applications and future development. In: Nathalie Bourgougnon (ed) Advances in Botanical Research focuses on sea plants, including algae, seaweed, and diatoms, Academic Press, ISBN:9780124080621Google Scholar
  15. Borines MG, De Leon RL, McHenry MP (2011) Bioethanol production from farming non-food macroalgae in Pacific island nations: chemical constituents, bioethanol yields, and prospective species in the Philippines. Renew Sustain Energ Rev 15:4432–4435CrossRefGoogle Scholar
  16. Bozell JJ (2008) Feedstocks for the future – biorefinery production of chemicals from renewable carbon. Clean 36:641–647Google Scholar
  17. Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markagr S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol 102:2595–2604PubMedCrossRefGoogle Scholar
  18. Castro LSEPW, Pinheiro TS, Castro AJG, Dore CMPG, Silva NB, Alves MGCF, Santos MSN, Leite EL (2014) Fucose-containing sulfated polysaccharides from brown macroalgae Lobophora variegata with antioxidant, anti-inflammatory, and antitumoral effects. J Appl Phycol 26:1783–1790CrossRefGoogle Scholar
  19. Chen P, Min M, Chen Y, Wang L, Li Y, Chen Q, Wang C, Wan Y, Wang X, Cheng Y, Deng S, Hennessy K, Lin X, Liu Y, Wang Y, Martinez B, Ruan R (2009) Review of the biological and engineering aspects of algae to fuels approach. Int J Agric Biol Eng 2:1–30Google Scholar
  20. Chirapart A, Praiboon J, Puangsombat P, Pattanapon C, Nunraksa N (2014) Chemical composition and ethanol production potential of Thai seaweed species. J Appl Phycol 26:979–986CrossRefGoogle Scholar
  21. Cho Y, Kim H, Kim SK (2013) Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess Biosyst Eng 36:713–719PubMedCrossRefGoogle Scholar
  22. Choi W, Kang D, Lee H (2013) Enhancement of the saccharification yields of Ulva pertusa Kjellmann and rape stems by the high-pressure steam pretreatment process. Biotechnol Bioprocess Eng 18:728–735CrossRefGoogle Scholar
  23. Ciancia M, Sato Y, Nonami H, Cerezo AS, Erra-Balsells R, Matulewicz MC (2005) Autohydrolysis of a partially cyclized mu/nu-carrageenan and structural elucidation of the oligosaccharides by chemical analysis, NMR spectroscopy and UV-MALDI mass spectrometry. Arkivoc 12:319–331Google Scholar
  24. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819PubMedCrossRefGoogle Scholar
  25. Cofrades S, López-López I, Solas MT, Bravo L, Jiménez-Colmenero F (2008) Influence of different types and proportions of added edible seaweeds on characteristics of low-salt gel/emulsion meat systems. Meat Sci 79:767–776PubMedCrossRefGoogle Scholar
  26. Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899CrossRefGoogle Scholar
  27. De Quirós AR, Lage-Yusty MA, López-Hernández J (2010) Determination of phenolic compounds in macroalgae for human consumption. Food Chem 121:634–638CrossRefGoogle Scholar
  28. Delattre C, Fenoradosoa TA, Michaud P (2011) Galactans: an overview of their most important sourcing and applications as natural polysaccharides. Braz Arch Biol Technol 54:1075–1092Google Scholar
  29. Denis C, Morançais M, Li M, Deniaud E, Gaudin P, Wielgosz-Collin G, Barnathan G, Jaouen P, Fleurence J (2010) Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem 119:913–917CrossRefGoogle Scholar
  30. Díaz-Vázquez LM, Rojas-Pérez A, Fuentes-Caraballo M, Robles-Ramos IV, Jena U, Das K (2015) Demineralization of Sargassum spp. macroalgae biomass: selective thermochemical liquefaction process for bio-oil production. Frontiers Energy Res. doi: 10.3389/fenrg.2015.00006 Google Scholar
  31. Eboibi BE, Lewis DM, Ashman PJ, Chinnasamy S (2014) Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp. Bioresour Technol 170:20–29PubMedCrossRefGoogle Scholar
  32. Elliot DC, Hart TR, Neuenschwander GG, Rotness LJ, Roessijadi G, Zacher AH, Magnuson JK (2014) Hydrothermal processing of macroalgal feedstocks in continuous-flow reactors. Sustain Chem Eng 2:207–215CrossRefGoogle Scholar
  33. Elliot DC, Biller P, Roos AB, Schmidt AJ, Jones SB (2015) Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresour Technol 178:147–156CrossRefGoogle Scholar
  34. Elliott DC, Hart TR, Schmidt AJ, Neuenschwander GG, Rotness LJ, Olarte MV, Zacher AH, Albrecht KO, Hallen RT, Holladay JE (2013) Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Res 2:445–454CrossRefGoogle Scholar
  35. Fang Z (2013) Pretreatment techniques for biofuels and biorefineries. Springer, Berlin. ISBN 978-3-642-32735-3CrossRefGoogle Scholar
  36. FAO (2012) Global Aquaculture Production 1950–2012. Available from: http://www.fao.org/figis/servlet/TabSelector. Accessed 15 Nov 2014
  37. Fasahati P, Woo HC, Liu JJ (2015) Industrial-scale bioethanol production from brown algae: effects of pretreatment processes on plant economics. Appl Energy 139:175–187CrossRefGoogle Scholar
  38. Fitton JH (2011) Therapies from fucoidan; multifunctional marine polymers. Mar Drugs 9:1731–1760PubMedCentralPubMedCrossRefGoogle Scholar
  39. Ge L, Wang P, Mou H (2011) Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energ 36:84–89CrossRefGoogle Scholar
  40. Golberg A, Vitkin E, Linshiz G, Khan SA, Hillson NJ, Yakhini Z, Yarmush ML (2014) Proposed design of distributed macroalgal biorefineries: thermodynamics, bioconversion technology, and sustainability implications for developing economies. Biofuels Bioprod Bioref 8:67–82CrossRefGoogle Scholar
  41. Gómez-Ordóñez E, Jiménez-Escrig A, Rupérez P (2010) Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res Int 43:2289–2294CrossRefGoogle Scholar
  42. González-López N, Moure A, Domínguez H (2012) Hydrothermal fractionation of Sargassum muticum biomass. J Appl Phycol 24:1569–1578CrossRefGoogle Scholar
  43. Gressler V, Fujii MT, Martins AP, Colepicolo P, Mancini-Filho J, Pinto E (2011) Biochemical composition of two red seaweed species grown on the Brazilian coast. J Sci Food Agric 91:1687–1692PubMedCrossRefGoogle Scholar
  44. Hayashi L, Bulboa C, Kradolfer P, Soriano G, Robledo D (2014) Cultivation of red seaweeds: a Latin American perspective. J Appl Phycol 26(22):719–727CrossRefGoogle Scholar
  45. Haykiri-Acma H, Yaman S, Kucukbayrak S (2013) Production of biobriquettes from carbonized brown seaweed. Fuel Process Technol 106:33–40CrossRefGoogle Scholar
  46. Hoang MH, Kim JY, Lee JH, You S, Lee SJ (2015) Antioxidative, hypolipidemic, and anti-inflammatory activities of sulfated polysaccharides from Monostroma nitidum. Food Sci Biotechnol 24:199–205CrossRefGoogle Scholar
  47. Hoffmann RA, Russell AR, Gidley MJ (1996) Molecular weight distribution of carrageenans. In: Philips GO, Williams PJ, Wedlock DJ (eds) Gums and stabilisers for the food industry. IRL Press at the Oxford University Press, Oxford, pp 137–148Google Scholar
  48. Hong IK, Jeon H, Lee SB (2014) Comparison of red, brown and green seaweeds on enzymatic saccharification process. J Ind Eng Chem 20:2687–2691CrossRefGoogle Scholar
  49. Hughes SR, Gibbons WR, Moser BR, Rich JO (2013) Chapter 9: Sustainable multipurpose biorefineries for third-generation biofuels and value-added co-products(. In: Zhen Fang (ed) Biofuels – economy, environment and sustainability. InTech, Rijeka ISBN:978-953-51-0950-1Google Scholar
  50. Jang SS, Shirai Y, Uchida M, Wakisaka M (2012a) Production of mono sugar from acid hydrolysis of seaweed. Afr J Biotechnol 11:1953–1963Google Scholar
  51. Jang JS, Cho Y, Jeong GT, Kim SK (2012b) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst Eng 35:11–18PubMedCrossRefGoogle Scholar
  52. Jard G, Dumas C, Delgenes JP, Marfaing H, Sialve B, Steyer JP, Carrere H (2013) Effect of thermochemical pretreatment on the solubilization and anaerobic biodegradability of the red macroalga Palmaria palmate. Biochem Eng J 79:253–258CrossRefGoogle Scholar
  53. Ji-Hyeon Y, Lee S, Choi WY, Kang DH, Lee HY, Jung KH (2011) Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J Microbiol Biotechnol 21:323–331Google Scholar
  54. Jung KW, Kim DH, Shin HS (2011) Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour Technol 102:2745–2750PubMedCrossRefGoogle Scholar
  55. Jung KA, Lim SR, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190PubMedCrossRefGoogle Scholar
  56. Kalimuthu S, Kim S (2015) Fucoidan, a sulfated polysaccharides from brown algae as therapeutic target for cancer (Chapter 7). In: Se-Kwon Kim (ed) Handbook of anticancer drugs from marine origin, Springer International Publishing, Switzerland, pp 145–164Google Scholar
  57. Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Change 18:27–46CrossRefGoogle Scholar
  58. Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol 135:150–156PubMedCrossRefGoogle Scholar
  59. Li D, Chen L, Chen S, Zhang X, Chen F, Ye N (2012) Comparative evaluation of the pyrolytic and kinetic characteristics of a macroalga (Sargassum thunbergii) and a freshwater plant (Potamogeton crispus). Fuel 96:185–191CrossRefGoogle Scholar
  60. Malihan LB, Nisola GM, Mittal N, Seo JG, Chung WJ (2014) Blended ionic liquid systems for macroalgae pretreatment. Renew Energ 66:596–604CrossRefGoogle Scholar
  61. Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97:2402–2406PubMedCrossRefGoogle Scholar
  62. Marquez GPB, Santiañez JE, Trono GC, Montaño MNE, Araki H, Takeuchi H, Hasegawa T (2014) Seaweed biomass of the Philippines: sustainable feedstock for biogas production. Renew Sustain Energ Rev 38:1056–1068CrossRefGoogle Scholar
  63. Marsham S, Scott GW, Tobin ML (2007) Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem 100:1331–1336CrossRefGoogle Scholar
  64. Matanjun P, Mohamed S, Mustapha NM, Muhammad K (2009) Nutrient content of tropical edible seaweeds Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol 21:75–80CrossRefGoogle Scholar
  65. Meillisa A, Woo H, Chun B (2015) Production of monosaccharides and bio-active compounds derived from marine polysaccharides using subcritical water hydrolysis. Food Chem 171:70–77PubMedCrossRefGoogle Scholar
  66. Mohamed S, Hashim SN, Rahman HA (2012) Seaweeds: a sustainable functional food for complementary and alternative therapy. Trends Food Sci Technol 23:83–96CrossRefGoogle Scholar
  67. Moncada J, Tamayo JA, Cardona CA (2014) Integrating first, second, and third generation biorefineries: incorporating microalgae into the sugarcane biorefinery. Chem Eng Sci 118:126–140CrossRefGoogle Scholar
  68. Montingelli ME, Tedesco S, Olabi AG (2015) Biogas production from algal biomass. Renew Sustain Energ Rev 43:961–972CrossRefGoogle Scholar
  69. National Renewable Energy Laboratory (NREL) Available at: http://www.nrel.gov/biomass/biorefinery.html. Accessed 15 Sep 2014
  70. Navarro DA, Stortz CA (2005) Microwave-assisted alkaline modification of red seaweed galactans. Carbohydr Polym 62:187–191CrossRefGoogle Scholar
  71. Neveux N, Magnusson M, Maschmeyer T, Nys R, Paul NA (2014a) Comparing the potential production and value of high‐energy liquid fuels and protein from marine and freshwater macroalgae. GCB Bioenerg 7:673–689Google Scholar
  72. Neveux N, Yuen AKL, Jazrawi C, Magnusson M, Haynes BS, Masters AF, Montoya A, Paul NA, Maschmeyer T, Nys R (2014b) Pre- and post-harvest treatment of macroalgae to improve the quality of feedstock for hydrothermal liquefaction. Algal Res 6:22–31CrossRefGoogle Scholar
  73. Nielsen HB, Heiske S (2011) Anaerobic digestion of macroalgae: methane potentials, pre-treatment, inhibition and co-digestion. Water Sci Technol 64:1723–1729PubMedCrossRefGoogle Scholar
  74. Okuda K, Oka K, Onda A, Kaijiyoshi K, Hiraoka M, Yanagisawa K (2008) Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. J Chem Technol Biotechnol 83:863–841CrossRefGoogle Scholar
  75. Oliveira JV, Alves MM, Costa JC (2014) Design of experiments to assess pre-treatment and co-digestion strategies that optimize biogas production from macroalgae Gracilaria vermiculophylla. Bioresour Technol 162:323–330PubMedCrossRefGoogle Scholar
  76. Oliveira JV, Alves MM, Costa JC (2015) Optimization of biogas production from Sargassum sp. using a design of experiments to assess the co-digestion with glycerol and waste frying oil. Bioresour Technol 175:480–485CrossRefGoogle Scholar
  77. Ortiz J, Romero N, Robert P, Araya J, Lopez-Hernandez J, Bozzo C, Navarrete E, Osorio A, Rios A (2006) Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea Antarctica. Food Chem 99:98–104CrossRefGoogle Scholar
  78. Overend RP, Chornet E (1987) Fractionation of lignocellulosic by steam-aqueous pretreatments. Philos Trans R Soc Lond 321:523–536CrossRefGoogle Scholar
  79. Peña-Rodríguez A, Mawhinney TP, Ricque-Marie D, Cruz-Suárez LE (2011) Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh. Food Chem 129:491–498CrossRefGoogle Scholar
  80. Peng Y, Xie E, Zheng K, Fredimoses M, Yang X, Zhou X, Wang Y, Yang B, Lin X, Liu J, Liu Y (2013) Nutritional and chemical composition and antiviral activity of cultivated seaweed Sargassum naozhouense Tseng et Lu. Mar Drugs 11:20–32PubMedCentralCrossRefGoogle Scholar
  81. Pham TH, Um Y, Yoon HH (2013) Pretreatment of macroalgae for volatile fatty acid production. Bioresour Technol 146:754–757PubMedCrossRefGoogle Scholar
  82. Podkorytova AV, Vafina LH, Kovaleva EA, Mikhailov VI (2007) Production of algal gels from the brown alga, Laminaria japonica Aresch., and their biotechnological applications. J Appl Phycol 19:827–830CrossRefGoogle Scholar
  83. Poots T, Du J, Paul M, May P, Beitle R, Hestekin J (2012) The production of butanol from Jamaica bay macro algae. Environ Prog Sustain Energ 31:29–36CrossRefGoogle Scholar
  84. Prajapati VD, Maheriya PM, Jani GH, Solanki HK (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112PubMedCrossRefGoogle Scholar
  85. Radulovich R, Umanzor S, Cabrera R, Mata R (2015) Tropical seaweeds for human food, their cultivation and its effect on biodiversity enrichment. Aquaculture 436:40–46CrossRefGoogle Scholar
  86. Rajauria G, Jaiswal AK, Abu-Ghannam A, Gupta S (2010) Effect of hydrothermal processing on colour, antioxidant and free radical scavenging capacities of edible Irish brown seaweeds. Int J Food Sci Technol 45:2485–2493CrossRefGoogle Scholar
  87. Rameshkumar S, Ramakritinan CM, Yokeshbabu M (2013) Proximate composition of some selected seaweeds from Palk bay and Gulf of Mannar, Tamilnadu, India. Asian J Biomed Pharm Sci 3:1–5Google Scholar
  88. Rioux LE, Turgeon SL, Beaulieu M (2007) Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym 69:530–537CrossRefGoogle Scholar
  89. Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA (2011) Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr Polym 86:1137–1144CrossRefGoogle Scholar
  90. Rodriguez-Jasso RM, Mussatto SI, Sepúlveda L, Agrasar AT, Pastrana L, Aguilar CN, Teixeira JA (2013) Fungal fucoidanase production by solid-state fermentation in a rotating drum bioreactor using algal biomass as substrate. Food Bioprod Process 91:587–594CrossRefGoogle Scholar
  91. Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA (2014) Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes. Chem Pap 68:203–209, 23CrossRefGoogle Scholar
  92. Roesijadi G, Jones SB, Snowden-Swan, Zhu Y (2010) Macroalgae as a biomass feedstock: A preliminary analysis. Pacific Northwest Laboratory and United States Department of Energy. Available from:http://www.pnl.gov/main/publications/external/technical_reports/pnnl-19944.pdf. Accessed 20 Nov 2014
  93. Ruiz HA, Cerqueira MA, Silva HD, Rodríguez-Jasso RM, Vicente AA, Teixeira JA (2013a) Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydr Polym 92:2154–2162PubMedCrossRefGoogle Scholar
  94. Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013b) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sustain Energ Rev 21:35–51CrossRefGoogle Scholar
  95. Ruiz HA, Parajó JC, Teixeira JA (2015) Biorefinery strategies for macroalgae-based in bioethanol production. In: Energy science and technology. Studium Press LLC, Houston (in press)Google Scholar
  96. Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, Bjerre AB (2013) Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol – comparison of five pretreatment technologies. Bioresour Technol 140:36–42PubMedCrossRefGoogle Scholar
  97. Schumacher M, Yanik J, Sinag A, Kruse A (2011) Hydrothermal conversion of seaweeds in a batch autoclave. J Supercrit Fluids 58:131–135CrossRefGoogle Scholar
  98. Seaweed Site: information on marine algae. Available from: http://www.seaweed.ie. Accessed 20 Nov 2014
  99. Senthilkumar K, Manivasagan P, Venkatesan J, Kim SK (2013) Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int J Biol Macromol 60:366–374PubMedCrossRefGoogle Scholar
  100. Shevchenko NM, Anastyuk SD, Menshova RV, Vishchuk OS, Isakov VI, Zadorozhny PA, Sikorskaya TV, Zvyagintseva TN (2014) Further studies on structure of fucoidan from brown alga Saccharina gurjanovae. Carbohydr Polym. doi: 10.1016/j.carbpol.2014.12.042 (In press)PubMedGoogle Scholar
  101. Shi J, Pu Y, Yang B, Ragauskas A, Wyman CE (2011) Comparison of microwaves to fluidized sand baths for heating tubular reactors for hydrothermal and dilute acid batch pretreatment of corn stover. Bioresour Technol 102:5952–5961PubMedCrossRefGoogle Scholar
  102. Siddhanta AK, Prasad K, Meena R, Prasad G, Metha GK, Chhatbar MU, Oza MD, Kumar S, Sanandiya ND (2009) Profiling of cellulose content in Indian seaweed species. Bioresour Technol 100:6669–6673PubMedCrossRefGoogle Scholar
  103. Singh R, Balagurumurthy B, Bhaskar T (2015a) Hydrothermal liquefaction of macro algae: effect of feedstock composition. Fuel 146:60–74Google Scholar
  104. Singh R, Bhaskar T, Balagurumurthy B (2015b) Effect of solvent on the hydrothermal liquefaction of macro algae Ulva fasciata. Process Saf Environ Prot 93:154–160Google Scholar
  105. Sun C, Chen Y, Zhang X, Pan J, Cheng H, Wu M (2014) Draft genome sequence of Microbulbifer elongatus strain HZ11, a brown seaweed-degrading bacterium with potential ability to produce bioethanol from alginate. Mar Geonomics 18:83–85CrossRefGoogle Scholar
  106. Suutari M, Leskinen E, Fagerstedt K, Juparinen J, Kuupo Blomster J (2015) Macroalgae in biofuel production. Phycol Res 63:1–18CrossRefGoogle Scholar
  107. Tedesco S, Benyounis KY, Olabi AG (2013) Mechanical pretreatment effects on macroalgae-derived biogas production in co-digestion with sludge in Ireland. Energy 61:27–33CrossRefGoogle Scholar
  108. Tekin K, Karagoz S (2013) Non-catalytic and catalytic hydrothermal liquefaction of biomass. Res Chem Intermed 39:485–498CrossRefGoogle Scholar
  109. Tekin K, Karagoz S, Bektaş S (2014) A review of hydrothermal biomass processing. Renew Sustain Energ Rev 40:673–687CrossRefGoogle Scholar
  110. Tian C, Li B, Liu Z, Zhang Y, Lu H (2014) Hydrothermal liquefaction for algal biorefinery: a critical review. Renew Sustain Energ Rev 38:933–950CrossRefGoogle Scholar
  111. Titlyanov EA, Titlyanova TV (2010) Seaweed cultivation: methods and problems. Russ J Mar Biol 36:227–242CrossRefGoogle Scholar
  112. Trivedi N, Gupta V, Reddy CRK, Jha B (2013) Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresour Technol 150:106–112PubMedCrossRefGoogle Scholar
  113. Usov AI, Zelinsky ND (2013) Chapter 2: Chemical structures of algal polysaccharides. In: Domínguez H (ed) Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing, Cambridge, pp 23–86CrossRefGoogle Scholar
  114. Vanegas CH, Hernon A, Bartlett J (2015) Enzymatic and organic acid pretreatment of seaweed: effect on reducing sugars production and on biogas inhibition. Int J Ambient Energ 36:2–7CrossRefGoogle Scholar
  115. Wal H, Sperber BLHM, Houweling-Tan B, Bakker RRC, Brandenburg W, López-Contreras AM (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol 128:431–437PubMedCrossRefGoogle Scholar
  116. Wang HMD, Chen CC, Huynh P, Chang JS (2014) Exploring the potential of using algae in cosmetics. Bioresour Technol. doi: 10.1016/j.biortech.2014.12.001 (In press)Google Scholar
  117. Wei N, Quarterman J, Jin Y (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31:70–77PubMedCrossRefGoogle Scholar
  118. Xu X, Kim JY, Oh YR, Park JM (2014) Production of biodiesel from carbon sources of macroalgae, Laminaria japonica. Bioresour Technol 169:455–461PubMedCrossRefGoogle Scholar
  119. Xu Y, Duan P, Wang F (2015) Hydrothermal processing of macroalgae for producing crude bio-oil. Fuel Process Technol 130:268–274CrossRefGoogle Scholar
  120. Yanagisawa M, Kawai S, Murata K (2013) Strategies for the production of high concentrations of bioethanol from seaweeds. Bioengineered 4:224–235PubMedCentralPubMedCrossRefGoogle Scholar
  121. Yazdani P, Zamani A, Karimi K, Taherzadeh MJ (2015) Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production. Bioresour Technol 176:196–202PubMedCrossRefGoogle Scholar
  122. Yeon JH, Lee SE, Choi WY, Kang DH, Lee HY, Jung KH (2011) Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J Microbiol Biotechnol 21:323–331PubMedGoogle Scholar
  123. Zafar M, Chowdhury SMRA (2009) Water quality and biochemical components of Hydroclathrus clathratus in the Tidal shore area of St. Martin’s Island, Bangladesh. Int J Phycol Phycochem 5:7–10Google Scholar
  124. Zhang B, Keitz MV, Valentas K (2008) Thermal effects on hydrothermal biomass liquefaction. Appl Biochem Biotechnol 147:143–150PubMedCrossRefGoogle Scholar
  125. Zhang B, Shahbazi A, Wang L, Diallo O, Whitmore A (2011) Hot-water pretreatment of cattails for extraction of cellulose. J Ind Microbiol Biotechnol 38:819–824PubMedCrossRefGoogle Scholar
  126. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53CrossRefGoogle Scholar
  127. Zhou D, Zhang L, Zhang S, Fu H, Chen J (2010) Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energ Fuel 24:4054–4061CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Héctor A. Ruiz
    • 1
    Email author
  • Rosa M. Rodríguez-Jasso
    • 1
  • Mario Aguedo
    • 2
  • Zsófia Kádár
    • 3
  1. 1.Biorefinery Group, Food Research Department, School of ChemistryAutonomous University of CoahuilaSaltilloMexico
  2. 2.Lab of Biological and Industrial ChemistryGembloux Agro-Bio Tech – University of LiègeGemblouxBelgium
  3. 3.Center for BioProcess Engineering, Department of Chemical and Biochemical EngineeringTechnical University of DenmarkKgs LyngbyDenmark

Personalised recommendations