Skip to main content

Importance sampling in signal processing applications

  • Chapter
Excursions in Harmonic Analysis, Volume 4

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1206 Accesses

Abstract

 Importance sampling is a technique originating in Monte Carlo simulation whereby one samples from a different,  weighted distribution, in order to reduce variance of the resulting estimator. More recently, variations of importance sampling have emerged as a means for reducing computational and sample complexity in different problems of modern signal processing. Here we review importance sampling as it is manifested in three such problems: stochastic optimization, compressive sensing, and low-rank matrix approximation. In keeping with a general trend in convex optimization towards the analysis of phase transitions for exact recovery, importance sampling in compressive sensing and low-rank matrix recovery can be used to effectively push the phase transition for exact recovery towards fewer measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The unknown might also be higher-dimensional, and is often 3-dimensional, but the ideas are analogous and we focus on the 2D example for simplicity.

  2. 2.

    This becomes the trace norm for positive-definite matrices. It is now well recognized to be a convex surrogate for rank minimization.

  3. 3.

    In the matrix sparsification literature [4, 14] and beyond, the quantities \(\left \Vert U^{\top }e_{i}\right \Vert ^{2}\) and \(\left \Vert V ^{\top }e_{j}\right \Vert ^{2}\) are referred to as the  leverage scores of  M.

References

  1. B. Adcock, A. Hansen, B. Roman, The quest for optimal sampling: computationally efficient, structure-exploiting measurements for compressed sensing. arXiv preprint (2014)

    Google Scholar 

  2. F. Bach, E. Moulines, Non-asymptotic analysis of stochastic approximation algorithms for machine learning, in  Advances in Neural Information Processing Systems (2011)

    Google Scholar 

  3. L. Bottou, Large-scale machine learning with stochastic gradient descent, in  Proceedings of COMPSTAT’2010, pp. 177–186, 2010

    Google Scholar 

  4. C. Boutsidis, M. Mahoney, P. Drineas, An improved approximation algorithm for the column subset selection problem, in  Proceedings of the Symposium on Discrete Algorithms, pp. 968–977, 2009

    Google Scholar 

  5. L. Brutman, Lebesgue functions for polynomial interpolation: a survey. Ann. Numer. Math.  4, 111– 127 (1997)

    MathSciNet  MATH  Google Scholar 

  6. N. Burq, S. Dyatlov, R. Ward, M. Zworski, Weighted eigenfunction estimates with applications to compressed sensing. SIAM J. Math. Anal.  44(5), 3481–3501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Candès, B. Recht, Exact matrix completion via convex optimization. Found. Comput. Math.  9(6), 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. E.J. Candès, T. Tao, Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory  52(12), 5406–5425 (2006)

    Article  MATH  Google Scholar 

  9. E. Candès, T. Tao, The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory  56(5), 2053–2080 (2010)

    Article  Google Scholar 

  10. E.J. Candès, T. Tao, J. Romberg, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory  52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  11. E.J. Candès, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math.  59(8), 1207–1223 (2006)

    Article  MATH  Google Scholar 

  12. Y. Chen, Incoherence-optimal matrix completion. arXiv preprint arXiv:1310.0154 (2013)

    Google Scholar 

  13. Y. Chen, S. Bhojanapalli, S. Sanghavi, R. Ward, Coherent matrix completion, in  Proceedings of the 31st International Conference on Machine Learning, pp. 674–682, 2014

    Google Scholar 

  14. P. Drineas, M. Magdon-Ismail, M. Mahoney, D. Woodruff, Fast approximation of matrix coherence and statistical leverage. J. Mach. Learn. Res.  13, 3475–3506 (2012)

    MathSciNet  MATH  Google Scholar 

  15. S. Foucart, H. Rauhut,  A Mathematical Introduction to Compressive Sensing (Springer, Berlin, 2013)

    Book  MATH  Google Scholar 

  16. R. Foygel, R. Salakhutdinov, O. Shamir, N. Srebro, Learning with the weighted trace-norm under arbitrary sampling distributions. arXiv:1106.4251 (2011)

    Google Scholar 

  17. D. Gross, Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inf. Theory  57(3), 1548–1566 (2011)

    Article  Google Scholar 

  18. J. Hampton, A. Doostan, Compressive sampling of polynomial chaos expansions: convergence analysis and sampling strategies. J. Comput. Phys.  280, 363–386 (2015)

    Article  MathSciNet  Google Scholar 

  19. R. Johnson, T. Zhang, Accelerating stochastic gradient descent using predictive variance reduction. Adv. Neural Inf. Process. Syst.  26, 315–323 (2013)

    Google Scholar 

  20. A. Jones, B. Adcock, A. Hansen, Analyzing the structure of multidimensional compressed sensing problems through coherence. arXiv preprint (2014)

    Google Scholar 

  21. F. Krahmer, R. Ward, Stable and robust sampling strategies for compressive imaging. IEEE Trans. Image Process.  23(2), 612–622 (2014)

    Article  MathSciNet  Google Scholar 

  22. A. Krishnamurthy, A. Singh, Low-rank matrix and tensor completion via adaptive sampling. arXiv preprint. arXiv:1304.4672v2 (2013)

    Google Scholar 

  23. M. Lustig, D. Donoho, J. Pauly, Sparse mri: the application of compressed sensing for rapid mri imaging. Magn. Reson. Med.  58(6), 1182–1195 (2007)

    Article  Google Scholar 

  24. M. Lustig, D. Donoho, J. Santos, J. Pauly, Compressed sensing mri. IEEE Signal Process. Mag.  25(2), 72–82 (2008)

    Article  Google Scholar 

  25. D. Needell, R. Ward, Stable image reconstruction using total variation minimization. SIAM J. Imag. Sci.  6(2), 1035–1058 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Needell, N. Srebro, R. Ward, Stochastic gradient descent and the randomized kaczmarz algorithm. arXiv preprint. arXiv:1310.5715 (2013)

    Google Scholar 

  27. S. Negahban, M. Wainwright, Restricted strong convexity and weighted matrix completion: optimal bounds with noise. J. Mach. Learn. Res.  13, 1665–1697 (2012)

    MathSciNet  MATH  Google Scholar 

  28. A. Nemirovski, A. Juditsky, G. Lan, A. Shapiro, Robust stochastic approximation approach to stochastic programming. SIAM J. Optim.  19(4), 1574–1609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim.  22(2), 341–362 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Nocedal, S.J. Wright,  Conjugate Gradient Methods (Springer, Berlin, 2006)

    Google Scholar 

  31. A.B. Owen,  Monte Carlo Theory, Methods and Examples (2013)

    Google Scholar 

  32. H. Rauhut, R. Ward, Sparse Legendre expansions via   1-minimization. J. Approx. Theory  164, 517–533 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Rauhut, R. Ward, Interpolation via weighted   1 minimization. arXiv preprint. arXiv:1308.0759 (2013)

    Google Scholar 

  34. B. Recht, A simpler approach to matrix completion. arXiv preprint. arXiv:0910.0651 (2009)

    Google Scholar 

  35. P. Richtárik, M. Takáč, Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program.  144(1), 1–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Robbins, S. Monrow, A stochastic approximation method. Ann. Math. Stat.  22(22), 400–407 (1951)

    Article  MATH  Google Scholar 

  37. N.L. Roux, M. Schmidt, F. Bach, A stochastic gradient method with an exponential convergence rate for finite training sets. Adv. Neural Inf. Process. Syst.  25, 2672–2680 (2012)

    Google Scholar 

  38. M. Rudelson, R. Vershynin, On sparse reconstruction from Fourier and Gaussian measurements. Commun. Pure Appl. Math.  61, 1025–1045 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Salakhutdinov, N. Srebro, Collaborative filtering in a non-uniform world: learning with the weighted trace norm. arXiv preprint. arXiv:1002.2780 (2010)

    Google Scholar 

  40. S. Shalev-Shwartz, N. Srebro, Svm optimization: inverse dependence on training set size, in  Proceedings of the 25th International Conference on Machine Learning, pp. 928–935, 2008

    Google Scholar 

  41. S. Shalev-Shwartz, T. Zhang, Proximal stochastic dual coordinate ascent. arXiv:1211.2772 (2012)

    Google Scholar 

  42. S. Shalev-Shwartz, T. Zhang, Stochastic dual coordinate ascent methods for regularized loss minimization. J. Mach. Learn. Res.  14, 567–599 (2013)

    MathSciNet  MATH  Google Scholar 

  43. N. Srebro, K. Sridharan, A. Tewari, Smoothness, low noise and fast rates, in  Advances in Neural Information Processing Systems (2010)

    Google Scholar 

  44. G. Szegö,  Orthogonal Polynomials (American Mathematical Society, Providence, RI, 1939)

    Google Scholar 

  45. L. Xiao, T. Zhang, A proximal stochastic gradient method with progressive variance reduction. SIAM J. Optim.  24(4), 2057–2075 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. P. Zhao, T. Zhang, Stochastic optimization with importance sampling. arXiv:1401.2753 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ward, R. (2015). Importance sampling in signal processing applications. In: Balan, R., Begué, M., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 4. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-20188-7_8

Download citation

Publish with us

Policies and ethics